搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电感电流伪连续导电模式下Buck变换器的动力学建模与分析

李振华 周国华 刘啸天 冷敏瑞

引用本文:
Citation:

电感电流伪连续导电模式下Buck变换器的动力学建模与分析

李振华, 周国华, 刘啸天, 冷敏瑞

Dynamical modeling and analysis of buck converter operating in pseudo-continuous conduction mode

Li Zhen-Hua, Zhou Guo-Hua, Liu Xiao-Tian, Leng Min-Rui
PDF
导出引用
  • 以电感电流伪连续导电模式(pseudo-continuous conduction mode, PCCM)下Buck变换器为例, 通过对开关变换器的开关模态的完整描述, 建立了PCCM Buck变换器的精确离散时间模型. 基于该模型, 研究了PCCM Buck变换器在负载电阻、电感等效串联电阻、电感、电容、参考电流和输入电压等电路参数变化时的分岔行为, 并揭示了变换器存在的次谐波振荡、倍周期分岔和混沌等复杂动力学行为. 基于分段光滑开关模型的数值仿真, 得到变换器在不同负载电阻下的时域波形图和相轨图, 验证了离散时间模型的正确性. 理论分析和仿真结果表明: PCCM Buck变换器更适合工作在轻载条件, 加大负载会导致变换器工作状态的失稳以及工作模式的转移; 电感的等效串联电阻对变换器稳定性具有一定程度的影响, 且等效串联电阻越大, 变换器越稳定. 研究结果对于设计与控制PCCM Buck变换器具有重要意义.
    Taking buck converter operating in pseudo-continuous conduction mode (PCCM) for example, through a detailed description of the switch state of the switching converter, its accurate discrete-time model is established in this paper. On the basis of the model, bifurcation diagrams of the PCCM buck converter with the variations of circuit parameters are obtained, including load resistance, equivalent series resistance (ESR) of inductor, inductance, capacitance, reference current, and input voltage. And the complex dynamical behaviors existing in PCCM buck converter, such as subharmonic oscillation, period-double bifurcation and chaos, are revealed. Under different load resistances, time-domain simulation waveforms and phase portraits of PCCM buck converter are obtained by Runge-Kutta algorithm based on the piecewise smooth switch model. The working states of PCCM buck converter, reflected by the time-domain waveforms and phase portraits, are consistent well with those described by the bifurcation diagrams. It is shown that the time-domain simulation results verify the validation of the discrete-time model.#br#From theoretical analysis and simulation results, some conclusions can be obtained below. 1) When the load resistance gradually decreases, PCCM buck converter has a unique bifurcation route, i. e. , from PCCM period-1 state, PCCM multi-period oscillation via period-double bifurcation, chaos, CCM-PCCM multi-period oscillation, to CCM period-1 state via inverse period-double bifurcation. What is more, the bifurcation analysis with the load resistance serving as parameter indicates that the PCCM buck converter is more suitable for light load conditions, and its stable state will be lost and operation mode can be shifted (from PCCM to CCM) with increasing the load. 2) The ESR of inductor is closely related to the power loss and will affect the stability of the PCCM converter. The larger the ESR, the more the power loss will be. However, the PCCM converter is more stable if the ESR is larger. 3) Period-double bifurcation or inverse period-double bifurcation exists in the PCCM buck converter with the other circuit parameters varied in a wide range except for the load resistance, and there are three working states of buck operating in PCCM, i.e., stable period-1 state, multi-period sub-harmonic oscillation, and chaos. The research results in this paper are useful for designing and controlling PCCM switching converter.
      通信作者: 周国华, ghzhou-swjtu@163.com
    • 基金项目: 国家自然科学基金(批准号: 61371033)、全国优秀博士学位论文作者专项资金(批准号: 201442)、霍英东教育基金会高等院校青年教师基金(批准号: 142027)和四川省青年科技基金(批准号: 2014JQ0015, 2013JQ0033)资助的课题.
      Corresponding author: Zhou Guo-Hua, ghzhou-swjtu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61371033), the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 201442), the Fok Ying-Tung Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 142027), and the Sichuan Provincial Youth Science and Technology Fund, China (Grant Nos. 2014JQ0015, 2013JQ0033).
    [1]

    Cafagnad D, Grassi G 2006 Nonlinear Dyn. 44 251

    [2]

    Xie F, Yang R, Zhang B 2011 IEEE Trans. Circ. Syst. I 58 2269

    [3]

    Wang F Q, Zhang H, Ma X K 2012 Chin. Phys. B 21 020505

    [4]

    Bao B C, Xu J P, Liu Z 2009 Chin. Phys. B 18 4742

    [5]

    Zhou G H, Xu J P, Bao B C, Jin Y Y 2010 Chin. Phys. B 19 060508

    [6]

    Zhou Y F, Chen J N, Iu H H C, Tse C K 2008 Int. J. Bifurc. Chaos 18 121

    [7]

    Zhou G H, Bao B C, Xu J P, Jin Y Y 2010 Chin. Phys. B 19 050509

    [8]

    Wang F Q, Ma X K 2013 Chin. Phys. B 22 120504

    [9]

    Moreno-Font V, El Aroudi A, Calvente J, Giral R, Benadero L 2010 IEEE Trans. Circ. Syst. I 57 415

    [10]

    Bao B C, Zhou G H, Xu J P, Liu Z 2011 IEEE Trans. Power Electron. 26 1968

    [11]

    Zhou G H, Xu J P, Bao B C, Wang J P, Jin Y Y 2011 Acta Phys. Sin. 60 010503(in Chinese) [周国华, 许建平, 包伯成, 王金平, 金艳艳 2011 60 010503]

    [12]

    Zhou G H, Bao B C, Xu J P 2013 Int. J. Bifurc. Chaos 23 1350062

    [13]

    Liu F 2010 Chin. Phys. B 19 080511

    [14]

    Ma D S, Ki W H 2007 IEEE Trans. Circuits Syst. I 54 825

    [15]

    Kanakasabai V, Ramesh O, Dipti S 2005 IEEE Trans. Power Electron. 20 790

    [16]

    Tan C, Liang Z S 2014 Acta Phys. Sin. 63 070502(in Chinese) [谭程, 梁志珊 2014 63 070502]

    [17]

    Tan C, Liang Z S, Zhang Q J 2014 Acta Phys. Sin. 63 200502(in Chinese) [谭程, 梁志珊, 张丘举 2014 63 200502]

    [18]

    Parui S, Banerjee S 2003 IEEE Trans. Circuits Syst. I 50 1464

  • [1]

    Cafagnad D, Grassi G 2006 Nonlinear Dyn. 44 251

    [2]

    Xie F, Yang R, Zhang B 2011 IEEE Trans. Circ. Syst. I 58 2269

    [3]

    Wang F Q, Zhang H, Ma X K 2012 Chin. Phys. B 21 020505

    [4]

    Bao B C, Xu J P, Liu Z 2009 Chin. Phys. B 18 4742

    [5]

    Zhou G H, Xu J P, Bao B C, Jin Y Y 2010 Chin. Phys. B 19 060508

    [6]

    Zhou Y F, Chen J N, Iu H H C, Tse C K 2008 Int. J. Bifurc. Chaos 18 121

    [7]

    Zhou G H, Bao B C, Xu J P, Jin Y Y 2010 Chin. Phys. B 19 050509

    [8]

    Wang F Q, Ma X K 2013 Chin. Phys. B 22 120504

    [9]

    Moreno-Font V, El Aroudi A, Calvente J, Giral R, Benadero L 2010 IEEE Trans. Circ. Syst. I 57 415

    [10]

    Bao B C, Zhou G H, Xu J P, Liu Z 2011 IEEE Trans. Power Electron. 26 1968

    [11]

    Zhou G H, Xu J P, Bao B C, Wang J P, Jin Y Y 2011 Acta Phys. Sin. 60 010503(in Chinese) [周国华, 许建平, 包伯成, 王金平, 金艳艳 2011 60 010503]

    [12]

    Zhou G H, Bao B C, Xu J P 2013 Int. J. Bifurc. Chaos 23 1350062

    [13]

    Liu F 2010 Chin. Phys. B 19 080511

    [14]

    Ma D S, Ki W H 2007 IEEE Trans. Circuits Syst. I 54 825

    [15]

    Kanakasabai V, Ramesh O, Dipti S 2005 IEEE Trans. Power Electron. 20 790

    [16]

    Tan C, Liang Z S 2014 Acta Phys. Sin. 63 070502(in Chinese) [谭程, 梁志珊 2014 63 070502]

    [17]

    Tan C, Liang Z S, Zhang Q J 2014 Acta Phys. Sin. 63 200502(in Chinese) [谭程, 梁志珊, 张丘举 2014 63 200502]

    [18]

    Parui S, Banerjee S 2003 IEEE Trans. Circuits Syst. I 50 1464

  • [1] 谭程, 梁志珊. 电感电流伪连续模式下Boost变换器的分数阶建模与分析.  , 2014, 63(7): 070502. doi: 10.7498/aps.63.070502
    [2] 沙金, 许建平, 许丽君, 钟曙. 电流型脉冲序列控制Buck变换器工作在电感电流连续导电模式时的多周期行为.  , 2014, 63(24): 248401. doi: 10.7498/aps.63.248401
    [3] 钟曙, 沙金, 许建平, 许丽君, 周国华. 脉冲跨周期调制连续导电模式Buck变换器低频波动现象研究.  , 2014, 63(19): 198401. doi: 10.7498/aps.63.198401
    [4] 杨祎巍, 刘佳林, 李斌. 基于比例积分控制的电压反馈型Buck变换器分岔.  , 2014, 63(4): 040502. doi: 10.7498/aps.63.040502
    [5] 张方樱, 杨汝, 龙晓莉, 谢陈跃, 陈虹. V2控制Buck变换器分岔与混沌行为的机理及镇定.  , 2013, 62(21): 218404. doi: 10.7498/aps.62.218404
    [6] 刘树林, 崔强, 李勇. Buck变换器的输出短路火花放电能量及输出本质安全判据.  , 2013, 62(16): 168401. doi: 10.7498/aps.62.168401
    [7] 贾美美, 张国山, 牛弘. 基于改善关联性Buck变换器的混沌控制.  , 2013, 62(13): 130503. doi: 10.7498/aps.62.130503
    [8] 秦明, 许建平, 高玉, 王金平. 基于电流基准的开关变换器脉冲序列控制方法.  , 2012, 61(3): 030204. doi: 10.7498/aps.61.030204
    [9] 包伯成, 杨平, 马正华, 张希. 电路参数宽范围变化时电流控制开关变换器的动力学研究.  , 2012, 61(22): 220502. doi: 10.7498/aps.61.220502
    [10] 沙金, 包伯成, 许建平, 高玉. 脉冲序列控制电流断续模式Buck变换器的动力学建模与边界碰撞分岔.  , 2012, 61(12): 120501. doi: 10.7498/aps.61.120501
    [11] 王金平, 许建平, 周国华, 米长宝, 秦明. 脉冲序列控制CCM Buck变换器低频波动现象分析.  , 2011, 60(4): 048402. doi: 10.7498/aps.60.048402
    [12] 周国华, 许建平, 包伯成, 王金平, 金艳艳. 电流源负载峰值电流控制buck变换器的复杂次谐波振荡现象.  , 2011, 60(1): 010503. doi: 10.7498/aps.60.010503
    [13] 王金平, 许建平, 徐杨军. 恒定导通时间控制buck变换器多开关周期振荡现象分析.  , 2011, 60(5): 058401. doi: 10.7498/aps.60.058401
    [14] 谢帆, 杨汝, 张波. 电流反馈型Buck变换器二维分段光滑系统边界碰撞和分岔研究.  , 2010, 59(12): 8393-8406. doi: 10.7498/aps.59.8393
    [15] 秦明, 许建平. 开关变换器多级脉冲序列控制研究.  , 2009, 58(11): 7603-7612. doi: 10.7498/aps.58.7603
    [16] 张笑天, 马西奎, 张 浩. 数字控制DC-DC Buck变换器中低频振荡现象分析.  , 2008, 57(10): 6174-6181. doi: 10.7498/aps.57.6174
    [17] 王发强, 张 浩, 马西奎. 单周控制Buck变换器中的降频现象分析.  , 2008, 57(5): 2842-2848. doi: 10.7498/aps.57.2842
    [18] 杨 汝, 张 波. DC-DC buck变换器时间延迟反馈混沌化控制.  , 2007, 56(7): 3789-3795. doi: 10.7498/aps.56.3789
    [19] 卢伟国, 周雒维, 罗全明. 电压模式BUCK变换器输出延迟反馈混沌控制.  , 2007, 56(10): 5648-5654. doi: 10.7498/aps.56.5648
    [20] 邹艳丽, 罗晓曙, 方锦清, 汪秉宏. 脉冲电压微分反馈法控制buck功率变换器中的混沌.  , 2003, 52(12): 2978-2984. doi: 10.7498/aps.52.2978
计量
  • 文章访问数:  6599
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-13
  • 修回日期:  2015-05-04
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map