搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改善关联性Buck变换器的混沌控制

贾美美 张国山 牛弘

引用本文:
Citation:

基于改善关联性Buck变换器的混沌控制

贾美美, 张国山, 牛弘

Chaotic control of the Buck converter based on improving the correlation

Jia Mei-Mei, Zhang Guo-Shan, Niu Hong
PDF
导出引用
  • 由于Buck变换器具有非线性特性, 在一定参数条件下, 它会处于混沌状态, 此时Buck变换器不能正常工作. 为了抑制Buck变换器的混沌现象, 本文首先建立了Buck变换器的精确状态方程模型, 然后通过分析可控范围图、开关逻辑图、相图、电感电流波形、输出电压波形, 研究了基于改善Buck变换器的电感电流与输出电压之间关联性的混沌控制策略. 研究结果表明: 该控制策略能够将处于混沌状态的Buck变换器稳定在周期1, 2, 4, 8轨道, 且该控制策略不需要预先确定期望的目标轨道, 不依赖于Buck变换器的电路参数, 只取决于一个外部参数即耦合强度, 所以该控制策略同样适用于其他 拓扑结构的功率变换器.
    Due to the strong nonlinearity of the Buck converter, it can be in the chaotic state under certain parameters and the chaotic Buck converter does not work normally. In order to suppress the chaotic phenomena in the Buck converter, a chaotic control scheme is demonstrated by establishing the accurate state equation models, and then analyzing the controllable range diagrams, the switching logic diagrams, the phase portrait, the inductor current waveforms and the output voltage waveforms. Also this scheme can be implemented by improving the correlation between the inductor current and the output voltage of the Buck converter. Research results show that this scheme can stabilize the chaotic Buck converter to the period-1, period-2, period-4, period-8 orbits, without determining the desired targeting orbits in advance. Moreover, this scheme does not depend on circuit parameters of the Buck converter, it only depends on an external parameter named the coupling strength, so this scheme can be applied to the other power converters.
    • 基金项目: 国家自然科学基金(批准号: 61074088)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61074088).
    [1]

    Di Bernardo M, Garofalo F, Glielmo L, Vasca F 1998 IEEE Trans. Circuits Syst. 45 133

    [2]

    Wang X M, Zhang B, Qiu D Y 2011 IEEE Trans. Power Electron. 26 2101

    [3]

    Yuan G H, Banerjee S, Ott E, Yorke J A 1998 IEEE Trans. Circuits Syst. 45 707

    [4]

    Ma Y, Tse C K, Kousaka T Kawakami H 2005 IEEE Trans. Circuits Syst. 52 581

    [5]

    Wang X M, Zhang B, Qiu D Y 2008 Acta Phys. Sin. 57 2728 (in Chinese) [王学梅, 张波, 丘东元 2008 57 2728]

    [6]

    Xie L L, Gong R X, Zhuo H Z, Ma X H 2012 Acta Phys. Sin. 61 058401 (in Chinese) [谢玲玲, 龚仁喜, 卓浩泽, 马献花 2012 61 058401]

    [7]

    Zou Y L, Luo X S, Chen G R 2006 Chin. Phys. 15 1719

    [8]

    Lu W G, Zhou L W, Luo Q M 2007 Chin. Phys. 16 3256

    [9]

    Lai X Q, Li Z H, Yuan B, Wang H, Ye Q, Zhao Y R 2010 Acta Phys. Sin. 59 2256 (in Chinese) [来新泉, 李祖贺, 袁冰, 王慧, 叶强, 赵永瑞 2010 59 2256]

    [10]

    Macau E E N, Turci L F R, Yoneyama T 2008 Eur. Phys. J. Special Topics 165 221

    [11]

    Turci L F R, Macau E E N, Yoneyama T 2009 Chaos Solitons Fractals 42 396

    [12]

    Lu W G, Zhou L W, Luo Q M, Zhang X F 2008 Phys. Lett. A 372 3217

    [13]

    Lu W G, Zhou L W, Luo Q M, Wu J K 2011 Int. J. Circ. Theor. Appl. 39 159

    [14]

    Patidar V, Pareek N K, Sud K K 2002 Phys. Lett. A 304 121

    [15]

    Zhou X A, Qian G B, Qiu S S 2006 Acta Phys. Sin. 55 3974 (in Chinese) [周小安, 钱恭斌, 丘水生 2006 55 3974]

    [16]

    Liu B Z, Peng J H 2007 Nonlinear Dynamics (Beijing: Higher Education Press) p377 (in Chinese) [刘秉正, 彭建华 2007 非线性动力学 (北京: 高等教育出版社) 第377页]

    [17]

    Olivar G, Fossas E, Batlle C 2000 Nonlinearity 13 1095

    [18]

    Dai D, Tse C K, Ma X K 2005 IEEE Trans. Circuits Syst. 52 1632

    [19]

    Lu W G, Zhou L W, Luo Q M 2007 Acta Phys. Sin. 56 5648 (in Chinese) [卢伟国, 周雒维, 罗全明 2007 56 5648]

    [20]

    Hamill D C, Deane J H B, Jefferies D J 1992 IEEE Trans. Power Electron. 7 25

    [21]

    Zhou Y F, Chen J N, Xu C 2005 Proceedings of the CSEE 25 31 (in Chinese) [周宇飞, 陈军宁, 徐超 2005 中国电机工程学报 25 31]

    [22]

    Banerjee S 1997 IEEE Trans. Circuits Syst. 44 847

    [23]

    Zou Y L, Luo X S, Fang J Q, Wang B H 2003 Acta Phys. Sin. 52 2979 (in Chinese) [邹艳丽, 罗晓曙, 方锦清, 汪秉宏 2003 52 2979]

    [24]

    Di Bernardo M, Budd C, Champneys A 1998 Nonlinearity 11 864

    [25]

    Fossas E, Olivar G 1996 IEEE Trans. Circuits Syst. 43 13

    [26]

    Bouali S 2012 Nonlinear Dyn. 70 2375

  • [1]

    Di Bernardo M, Garofalo F, Glielmo L, Vasca F 1998 IEEE Trans. Circuits Syst. 45 133

    [2]

    Wang X M, Zhang B, Qiu D Y 2011 IEEE Trans. Power Electron. 26 2101

    [3]

    Yuan G H, Banerjee S, Ott E, Yorke J A 1998 IEEE Trans. Circuits Syst. 45 707

    [4]

    Ma Y, Tse C K, Kousaka T Kawakami H 2005 IEEE Trans. Circuits Syst. 52 581

    [5]

    Wang X M, Zhang B, Qiu D Y 2008 Acta Phys. Sin. 57 2728 (in Chinese) [王学梅, 张波, 丘东元 2008 57 2728]

    [6]

    Xie L L, Gong R X, Zhuo H Z, Ma X H 2012 Acta Phys. Sin. 61 058401 (in Chinese) [谢玲玲, 龚仁喜, 卓浩泽, 马献花 2012 61 058401]

    [7]

    Zou Y L, Luo X S, Chen G R 2006 Chin. Phys. 15 1719

    [8]

    Lu W G, Zhou L W, Luo Q M 2007 Chin. Phys. 16 3256

    [9]

    Lai X Q, Li Z H, Yuan B, Wang H, Ye Q, Zhao Y R 2010 Acta Phys. Sin. 59 2256 (in Chinese) [来新泉, 李祖贺, 袁冰, 王慧, 叶强, 赵永瑞 2010 59 2256]

    [10]

    Macau E E N, Turci L F R, Yoneyama T 2008 Eur. Phys. J. Special Topics 165 221

    [11]

    Turci L F R, Macau E E N, Yoneyama T 2009 Chaos Solitons Fractals 42 396

    [12]

    Lu W G, Zhou L W, Luo Q M, Zhang X F 2008 Phys. Lett. A 372 3217

    [13]

    Lu W G, Zhou L W, Luo Q M, Wu J K 2011 Int. J. Circ. Theor. Appl. 39 159

    [14]

    Patidar V, Pareek N K, Sud K K 2002 Phys. Lett. A 304 121

    [15]

    Zhou X A, Qian G B, Qiu S S 2006 Acta Phys. Sin. 55 3974 (in Chinese) [周小安, 钱恭斌, 丘水生 2006 55 3974]

    [16]

    Liu B Z, Peng J H 2007 Nonlinear Dynamics (Beijing: Higher Education Press) p377 (in Chinese) [刘秉正, 彭建华 2007 非线性动力学 (北京: 高等教育出版社) 第377页]

    [17]

    Olivar G, Fossas E, Batlle C 2000 Nonlinearity 13 1095

    [18]

    Dai D, Tse C K, Ma X K 2005 IEEE Trans. Circuits Syst. 52 1632

    [19]

    Lu W G, Zhou L W, Luo Q M 2007 Acta Phys. Sin. 56 5648 (in Chinese) [卢伟国, 周雒维, 罗全明 2007 56 5648]

    [20]

    Hamill D C, Deane J H B, Jefferies D J 1992 IEEE Trans. Power Electron. 7 25

    [21]

    Zhou Y F, Chen J N, Xu C 2005 Proceedings of the CSEE 25 31 (in Chinese) [周宇飞, 陈军宁, 徐超 2005 中国电机工程学报 25 31]

    [22]

    Banerjee S 1997 IEEE Trans. Circuits Syst. 44 847

    [23]

    Zou Y L, Luo X S, Fang J Q, Wang B H 2003 Acta Phys. Sin. 52 2979 (in Chinese) [邹艳丽, 罗晓曙, 方锦清, 汪秉宏 2003 52 2979]

    [24]

    Di Bernardo M, Budd C, Champneys A 1998 Nonlinearity 11 864

    [25]

    Fossas E, Olivar G 1996 IEEE Trans. Circuits Syst. 43 13

    [26]

    Bouali S 2012 Nonlinear Dyn. 70 2375

  • [1] 郑连清, 彭一. 电压型buck-boost变换器的混沌控制.  , 2016, 65(22): 220502. doi: 10.7498/aps.65.220502
    [2] 张方樱, 胡维, 陈新兵, 陈虹, 唐雄民. 基于状态关联性的Boost变换器混沌与反混沌控制.  , 2015, 64(4): 048401. doi: 10.7498/aps.64.048401
    [3] 彭兴钊, 姚宏, 杜军, 丁超, 张志浩. 基于时滞耦合映像格子的多耦合边耦合网络级联抗毁性研究.  , 2014, 63(7): 078901. doi: 10.7498/aps.63.078901
    [4] 杨祎巍, 刘佳林, 李斌. 基于比例积分控制的电压反馈型Buck变换器分岔.  , 2014, 63(4): 040502. doi: 10.7498/aps.63.040502
    [5] 李冠林, 李春阳, 陈希有, 张效伟. 基于共振参数微扰法的SEPIC变换器的混沌控制.  , 2013, 62(21): 210505. doi: 10.7498/aps.62.210505
    [6] 张方樱, 杨汝, 龙晓莉, 谢陈跃, 陈虹. V2控制Buck变换器分岔与混沌行为的机理及镇定.  , 2013, 62(21): 218404. doi: 10.7498/aps.62.218404
    [7] 刘莹莹, 潘炜, 江宁, 项水英, 林煜东. 链式互耦合半导体激光器的实时混沌同步.  , 2013, 62(2): 024208. doi: 10.7498/aps.62.024208
    [8] 秦明, 许建平, 高玉, 王金平. 基于电流基准的开关变换器脉冲序列控制方法.  , 2012, 61(3): 030204. doi: 10.7498/aps.61.030204
    [9] 沙金, 包伯成, 许建平, 高玉. 脉冲序列控制电流断续模式Buck变换器的动力学建模与边界碰撞分岔.  , 2012, 61(12): 120501. doi: 10.7498/aps.61.120501
    [10] 王金平, 许建平, 周国华, 米长宝, 秦明. 脉冲序列控制CCM Buck变换器低频波动现象分析.  , 2011, 60(4): 048402. doi: 10.7498/aps.60.048402
    [11] 王金平, 许建平, 徐杨军. 恒定导通时间控制buck变换器多开关周期振荡现象分析.  , 2011, 60(5): 058401. doi: 10.7498/aps.60.058401
    [12] 秦明, 许建平. 开关变换器多级脉冲序列控制研究.  , 2009, 58(11): 7603-7612. doi: 10.7498/aps.58.7603
    [13] 王发强, 张 浩, 马西奎. 单周控制Buck变换器中的降频现象分析.  , 2008, 57(5): 2842-2848. doi: 10.7498/aps.57.2842
    [14] 卢伟国, 周雒维, 罗全明, 杜 雄. BOOST变换器延迟反馈混沌控制及其优化.  , 2007, 56(11): 6275-6281. doi: 10.7498/aps.56.6275
    [15] 杨 汝, 张 波. DC-DC buck变换器时间延迟反馈混沌化控制.  , 2007, 56(7): 3789-3795. doi: 10.7498/aps.56.3789
    [16] 卢伟国, 周雒维, 罗全明. 电压模式BUCK变换器输出延迟反馈混沌控制.  , 2007, 56(10): 5648-5654. doi: 10.7498/aps.56.5648
    [17] 周小安, 钱恭斌, 丘水生. 基于改善空间关联性的混沌控制.  , 2006, 55(8): 3974-3978. doi: 10.7498/aps.55.3974
    [18] 周宇飞, 陈军宁, 谢智刚, 柯导明, 时龙兴, 孙伟锋. 参数共振微扰法在Boost变换器混沌控制中的实现及其优化.  , 2004, 53(11): 3676-3683. doi: 10.7498/aps.53.3676
    [19] 罗晓曙, 汪秉宏, 陈关荣, 全宏俊, 方锦清, 邹艳丽, 蒋品群. DC-DC buck变换器的分岔行为及混沌控制研究.  , 2003, 52(1): 12-17. doi: 10.7498/aps.52.12
    [20] 邹艳丽, 罗晓曙, 方锦清, 汪秉宏. 脉冲电压微分反馈法控制buck功率变换器中的混沌.  , 2003, 52(12): 2978-2984. doi: 10.7498/aps.52.2978
计量
  • 文章访问数:  6499
  • PDF下载量:  524
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-30
  • 修回日期:  2013-03-17
  • 刊出日期:  2013-07-05

/

返回文章
返回
Baidu
map