-
Based on the piecewise smooth model, the smooth model and the discrete iterative model of proportion-integration (PI)-based voltage-mode Buck converter are derived. In this paper, it is proved that the chaotic attractor moves on the load line and is controlled by duty cycle, and that the manifold of the model moves around the chaotic attractor accompanied by the occurrences of period 1, period 2 and chaos phenomenon. The linear relationship between output voltage of the PI-controller and output voltage of Buck converter is derived, and then reveals that the proportional factor is a dominant one in PI controller. The period-doubling bifurcation, border collision and chaos are analyzed, and the state transfer process is exhibited. Experimental results verify that the theoretical modeling analysis and the simulation are correct.
-
Keywords:
- PI-based /
- voltage-mode /
- Buck converter /
- bifurcation
[1] Sha J, Bao B C, Xu J P, Gao Y 2012 Acta Phys. Sin. 61 120501 (in Chinese) [沙金, 包伯成, 许建平, 高玉 2012 61 120501]
[2] Huang M, Wong S C, Tse C K, Ruan X B 2013 IEEE Trans. Circ. Syst. I 60 1062
[3] Wang F Q, Zhang H, Ma X K 2012 Chin. Phys. B 21 020505
[4] Zhao Y B, Feng J C, Chen Y F 2013 Int. J. Bifucat. Chaos 23 1350113
[5] Basak B, Parui S 2010 IEEE Trans. Power Electr. 25 1556
[6] Xie F, Yang R, Zhang B 2011 IEEE Trans. Circ. Syst. I 58 2269
[7] Yang N N, Liu C X, Wu C J 2012 Chin. Phys. B 21 080503
[8] Xie F, Zhang B, Yang R 2013 IEEE Tran. Ind. Electron. 60 3145
[9] Deivasundari P, Uma G, Poovizhi R 2013 IET Power Electr. 6 763
[10] Bao B C, Xu J P, Liu Z 2009 Chin. Phys. B 18 4742
[11] Zhou G H, Xu J P, Bao B C, Jin Y Y 2010 Chin. Phys. B 19 060508
[12] Yang P, Xu J P, He S Z, Bao B C 2013 Acta Phys. Sin. 62 160501 (in Chinese) [杨平, 许建平, 何圣仲, 包伯成 2013 62 160501]
[13] Bao B C, Yang P, Ma Z H, Zhang X 2012 Acta Phys. Sin. 61 220502 (in Chinese) [包伯成, 杨平, 马正华, 张希 2012 61 2220502]
[14] Xie L L, Gong R X, Zhuo H Z, Ma X H 2012 Acta Phys. Sin. 61 058401 (in Chinese) [谢玲玲, 龚仁喜, 卓浩泽, 马献花 2012 61 058401]
[15] He S Z, Zhou G H, Xu J P, Bao B C, Yang P 2013 Acta Phys. Sin. 62 110503 (in Chinese) [何圣仲, 周国华, 许建平, 包伯成, 杨平 2013 62 110503]
[16] Liu F, 2010 Chin. Phys. B 19 080511
-
[1] Sha J, Bao B C, Xu J P, Gao Y 2012 Acta Phys. Sin. 61 120501 (in Chinese) [沙金, 包伯成, 许建平, 高玉 2012 61 120501]
[2] Huang M, Wong S C, Tse C K, Ruan X B 2013 IEEE Trans. Circ. Syst. I 60 1062
[3] Wang F Q, Zhang H, Ma X K 2012 Chin. Phys. B 21 020505
[4] Zhao Y B, Feng J C, Chen Y F 2013 Int. J. Bifucat. Chaos 23 1350113
[5] Basak B, Parui S 2010 IEEE Trans. Power Electr. 25 1556
[6] Xie F, Yang R, Zhang B 2011 IEEE Trans. Circ. Syst. I 58 2269
[7] Yang N N, Liu C X, Wu C J 2012 Chin. Phys. B 21 080503
[8] Xie F, Zhang B, Yang R 2013 IEEE Tran. Ind. Electron. 60 3145
[9] Deivasundari P, Uma G, Poovizhi R 2013 IET Power Electr. 6 763
[10] Bao B C, Xu J P, Liu Z 2009 Chin. Phys. B 18 4742
[11] Zhou G H, Xu J P, Bao B C, Jin Y Y 2010 Chin. Phys. B 19 060508
[12] Yang P, Xu J P, He S Z, Bao B C 2013 Acta Phys. Sin. 62 160501 (in Chinese) [杨平, 许建平, 何圣仲, 包伯成 2013 62 160501]
[13] Bao B C, Yang P, Ma Z H, Zhang X 2012 Acta Phys. Sin. 61 220502 (in Chinese) [包伯成, 杨平, 马正华, 张希 2012 61 2220502]
[14] Xie L L, Gong R X, Zhuo H Z, Ma X H 2012 Acta Phys. Sin. 61 058401 (in Chinese) [谢玲玲, 龚仁喜, 卓浩泽, 马献花 2012 61 058401]
[15] He S Z, Zhou G H, Xu J P, Bao B C, Yang P 2013 Acta Phys. Sin. 62 110503 (in Chinese) [何圣仲, 周国华, 许建平, 包伯成, 杨平 2013 62 110503]
[16] Liu F, 2010 Chin. Phys. B 19 080511
计量
- 文章访问数: 6671
- PDF下载量: 785
- 被引次数: 0