-
脉冲序列控制(PT)是一种离散的非线性开关变换器控制方法, 具有瞬态响应快、无需补偿网络、控制电路实现简单等优点. 根据控制脉冲的产生方式不同, 脉冲序列控制可分为电压型脉冲序列控制(voltage-mode PT, VM-PT)和电流型脉冲序列控制(current-mode PT, CM-PT). 研究表明, 工作于电感电流连续导电模式(continuous conduction mode, CCM)与工作于电感电流断续导电模式(discontinuous conduction mode)的VM-PT控制开关变换器的工作特性存在明显差别, VM-PT控制CCM开关变换器存在的低频振荡现象严重影响了其稳态及瞬态性能. 目前, 对CM-PT控制CCM开关变换器的工作特性还未见相关报道. 本文研究了CM-PT控制CCM开关变换器的工作特性, 对其控制参数以及稳定工作域进行了分析. 分析结果表明, 通过参数的合理设计, 虽然可以避免低频振荡现象的发生以及开关管不能正常关断的问题, 但存在变换器功率范围窄的缺点. 最后针对这一缺点提出了一种改进的控制方法.
-
关键词:
- 电流型 /
- 脉冲序列控制 /
- 电感电流连续导电模式
Pulse train (PT) control technique is a discrete, nonlinear control technique for switching converter which benefits from simple design and ultra fast transient response. As an output-power-control-based control technique, a low-frequency oscillation phenomenon occurs in voltage-mode PT controlled switching converter operating in continuous conduction mode. This phenomenon will seriously affect the steady and transient performances of switching converter. In this paper, a current-mode PT (CM-PT) controlled switching converter is studied. The normally working region is studied and the parameter conditions are estimated. Targeting the problem of CM-PT control technique, a modified control technique is proposed.-
Keywords:
- current-mode /
- pulse train /
- continuous conduction mode
[1] Qin M, Xu J P, Zhou G H, Mu Q B 2009 Proc. IEEE 4th ICIEA Xi'an, China, May 25-27, 2009 p2924
[2] Sha J, Bao B C, Xu J P, Gao Y 2012 Acta Phys. Sin. 61 120501 (in Chinese) [沙金, 包伯成, 许建平, 高玉 2012 61 120501]
[3] Ferdowsi M, Emadi A, Telefus M, Shteynberq A 2005 IEEE Trans. Power Electron. 20 798
[4] Sha J, Xu J P, Bao B C, Yan T S 2014 IEEE Trans. Ind. Electron. 61 1562
[5] Telefus M, Shteynberg A, Ferdowsi M, Emadi A 2004 IEEE Trans. Power Electron. 19 757
[6] Ferdowsi M, Emadi A, Telefus M, Shteynberq A 2005 IEEE Trans. Aerosp. Electron. 41 181
[7] Sha J, Xu J P 2013 Acta Phys. Sin. 62 218402 (in Chinese) [沙金, 许建平 2013 62 218402]
[8] Bao B C, Xu J P, Liu Z 2009 Chin. Phys. B 18 4742
[9] Yang N N, Liu C X, Wu C J 2012 Chin. Phys. B 21 080503
[10] Wang F Q, Ma X K 2012 Chin. Phys. B 21 030506
[11] Wang J P, Xu J P, Zhou G H, Mi C B, Qin M 2011 Acta Phys. Sin. 60 048402 (in Chinese) [王金平, 许建平, 周国华, 米长宝, 秦明 2011 60 048402]
[12] Wang J P, Xu J P, Zhou G H, Bao B C 2013 IEEE Trans. Ind. Electron. 60 5875
-
[1] Qin M, Xu J P, Zhou G H, Mu Q B 2009 Proc. IEEE 4th ICIEA Xi'an, China, May 25-27, 2009 p2924
[2] Sha J, Bao B C, Xu J P, Gao Y 2012 Acta Phys. Sin. 61 120501 (in Chinese) [沙金, 包伯成, 许建平, 高玉 2012 61 120501]
[3] Ferdowsi M, Emadi A, Telefus M, Shteynberq A 2005 IEEE Trans. Power Electron. 20 798
[4] Sha J, Xu J P, Bao B C, Yan T S 2014 IEEE Trans. Ind. Electron. 61 1562
[5] Telefus M, Shteynberg A, Ferdowsi M, Emadi A 2004 IEEE Trans. Power Electron. 19 757
[6] Ferdowsi M, Emadi A, Telefus M, Shteynberq A 2005 IEEE Trans. Aerosp. Electron. 41 181
[7] Sha J, Xu J P 2013 Acta Phys. Sin. 62 218402 (in Chinese) [沙金, 许建平 2013 62 218402]
[8] Bao B C, Xu J P, Liu Z 2009 Chin. Phys. B 18 4742
[9] Yang N N, Liu C X, Wu C J 2012 Chin. Phys. B 21 080503
[10] Wang F Q, Ma X K 2012 Chin. Phys. B 21 030506
[11] Wang J P, Xu J P, Zhou G H, Mi C B, Qin M 2011 Acta Phys. Sin. 60 048402 (in Chinese) [王金平, 许建平, 周国华, 米长宝, 秦明 2011 60 048402]
[12] Wang J P, Xu J P, Zhou G H, Bao B C 2013 IEEE Trans. Ind. Electron. 60 5875
计量
- 文章访问数: 5996
- PDF下载量: 170
- 被引次数: 0