搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛酸钡纳米颗粒铁电性临界尺寸的理论分析

刘永广 康爱国 张少飞 侯志文 刘文斌

引用本文:
Citation:

钛酸钡纳米颗粒铁电性临界尺寸的理论分析

刘永广, 康爱国, 张少飞, 侯志文, 刘文斌

Theoretical analysis on ferroelectricity critical dimension of BaTiO3 nanoparticles

Liu Yong-Guang, Kang Ai-Guo, Zhang Shao-Fei, Hou Zhi-Wen, Liu Wen-Bin
PDF
导出引用
  • 从铁电体的Eular-Lagrange方程出发, 取贝塞尔方程级数解的形式, 得到了钛酸钡陶瓷颗粒的总极化强度表达式, 分析了各系数对总极化强度的影响. 根据总极化强度表达式, 采用MATLAB软件对尺寸在100 nm以下的钛酸钡纳米颗粒的铁电性进行了仿真分析. 结合实际数据探讨了尺寸效应对陶瓷颗粒铁电性的影响, 获得了与实验数据相符的数值解和极小值, 从而预测了钛酸钡纳米颗粒铁电性存在的临界尺寸为6 nm.
    The expression of the total polarization intensity of BaTiO3 nanoparticles based on Euler-Lagrange equation for ferroelectric particles and the form of the series solution of Bessel function are obtained, the influences of coefficient on the total polarization intensity are analyzed. According to the expression for the total polarization intensity, the ferroelectricity of BaTiO3 nanoparticles with different size below 100 nm is simulated and analyzed by MATLAB. Based on experimental data, the effect of grain size on the ferroelectricity is discussed by searching for the numerical value of the solution, and the critical grain size of BaTiO3 nanoparticles with ferroelectricity is predicted to be 6 nm subsequently; or, more specifically, based on the Euler-Lagrange equation of ferroelectric particle's total free energy, and according to the boundary condition, the equation is given in spherical coordinates, and the transformed equation has the form and characteristics of the Bessel equation, Therefore, it can be discussed according to the characteri-stics of the Bessel equation. It is considered that it has the series solution, and according to the form of deduced series solution, at the same time, under reasonable conditions, the change of polarization is simulated. By combining with the boundary conditions, the total expression of polarization of nanoparticles may be obtained. It contains some factors, first of all, it is analyzed on the whole, and the effect the factors have on the total expression of polarization of the nanoparticles is analyzed. The factors that directly affect, or indirectly affect the polarization intensity, and thus influence the trend of polarization intensity change is analyzed and identified. Then, the effect of each factor on the dielectric constant is simulated by adjusting the factors, and the numerical solution obtained is consistent with the experimental data, so the predictive value can be obtained.
      通信作者: 康爱国, kaglq@126.com
    • 基金项目: 山西省自然基金(批准号: 2012011028-2)和山西省国际科技合作计划项目(批准号: 201481029-2)资助的课题.
      Corresponding author: Kang Ai-Guo, kaglq@126.com
    • Funds: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 2012011028-2), and the International Scientific and Technological Cooperation Project of Shanxi Province, China (2014081029-2).
    [1]

    Hou Z W, Kang A G, Ma W Q, Zhao X L 2014 Chin. Phys. B 23 117701

    [2]

    Sharma V, Pilania G, Rossetti G A, Jr Slenes K, Ramprasad R 2013 Phys. Rev. B 87 134109

    [3]

    Zhou Z, Lin Y R, Tang H X, Henry A Sodano 2013 Nanotechnology 24 095602

    [4]

    Sakuma T, Yoshida H 2009 Mater. Trans. 50 229

    [5]

    Cui L, Xu Q, Han Z Y, Xu X 2012 Chin. Phys. Lett. 29 037701

    [6]

    Astefanoaei, Dumitr, Stancu 2013 Chin. Phys. B 22 128102

    [7]

    Wang Y L, Zhang P C, Liu H R, Liu B T, Fu G S 2011 Acta Phys. Sin. 60 077702 (in Chinese) [王英龙, 张鹏程, 刘虹让, 刘保亭, 傅广生 2011 60 077702]

    [8]

    Hou Z W, Kang A G, Ma W Q, Zhao X L 2014 Journal of Synthetic Crystals 43 2219 (in Chinese) [侯志文, 康爱国, 马维青, 赵晓龙 2014 人工晶体学报 43 2219]

    [9]

    Mark McNeal P, Sei-Joo Jang, Robert Newnham E 1998 J. Appl. Phys. 83 3288

    [10]

    Wu H, Zhan Y G, Xing H Z, Shen W Z 2009 Solid State Commun. 149 802

    [11]

    Gao K, Wei M M, Qu Z P, Fu Q, Bao X H 2013 Chinese Journal of Catalysis 34 889

    [12]

    CAI M Q, DU Y, HUANG B Y 2009 Trans. Nonferrous Met. Soc. China 19 1634

    [13]

    Xing Y h, Liang H, Li X L, Si L Q 2009 Particuology 7 414

    [14]

    Cohen R E, Krakauer H 1992 Ferroelectrics 136 65

    [15]

    Cui L, Lu T Q, Sun P N, Xue H J 2010 Chin. Phys. B 19 077701

    [16]

    Cohen R E 1992 Nature 136 95

    [17]

    Astefanoaei I, Dumitru I, Stancu Al 2013 Chin. Phys. B 22 128102

    [18]

    Zhong W L, Wang Y G, Zhang P L, Qu B D 1994 Phys. Rev. B 50 698

    [19]

    Xue W D, Chen S Y, Yang C, Li Y R 2005 Acta Phys. Sin. 54 857 (in Chinese) [薛卫东, 陈召勇, 杨春, 李言荣 2005 54 857]

    [20]

    Zhang H T, Kang A G, Yang B G, Xue H, Guo X L 2013 Journal of Synthetic Crystals 42 1848 (in Chinese) [张海涛, 康爱国, 杨北革, 薛 辉, 郭小龙 2013 人工晶体学报 42 1848]

    [21]

    Zhang X Y, Li L J, Huang Y C 2014 Acta Phys. Sin. 63 190301 (in Chinese) [章新友, Li L J, 黄永畅 2014 63 190301]

  • [1]

    Hou Z W, Kang A G, Ma W Q, Zhao X L 2014 Chin. Phys. B 23 117701

    [2]

    Sharma V, Pilania G, Rossetti G A, Jr Slenes K, Ramprasad R 2013 Phys. Rev. B 87 134109

    [3]

    Zhou Z, Lin Y R, Tang H X, Henry A Sodano 2013 Nanotechnology 24 095602

    [4]

    Sakuma T, Yoshida H 2009 Mater. Trans. 50 229

    [5]

    Cui L, Xu Q, Han Z Y, Xu X 2012 Chin. Phys. Lett. 29 037701

    [6]

    Astefanoaei, Dumitr, Stancu 2013 Chin. Phys. B 22 128102

    [7]

    Wang Y L, Zhang P C, Liu H R, Liu B T, Fu G S 2011 Acta Phys. Sin. 60 077702 (in Chinese) [王英龙, 张鹏程, 刘虹让, 刘保亭, 傅广生 2011 60 077702]

    [8]

    Hou Z W, Kang A G, Ma W Q, Zhao X L 2014 Journal of Synthetic Crystals 43 2219 (in Chinese) [侯志文, 康爱国, 马维青, 赵晓龙 2014 人工晶体学报 43 2219]

    [9]

    Mark McNeal P, Sei-Joo Jang, Robert Newnham E 1998 J. Appl. Phys. 83 3288

    [10]

    Wu H, Zhan Y G, Xing H Z, Shen W Z 2009 Solid State Commun. 149 802

    [11]

    Gao K, Wei M M, Qu Z P, Fu Q, Bao X H 2013 Chinese Journal of Catalysis 34 889

    [12]

    CAI M Q, DU Y, HUANG B Y 2009 Trans. Nonferrous Met. Soc. China 19 1634

    [13]

    Xing Y h, Liang H, Li X L, Si L Q 2009 Particuology 7 414

    [14]

    Cohen R E, Krakauer H 1992 Ferroelectrics 136 65

    [15]

    Cui L, Lu T Q, Sun P N, Xue H J 2010 Chin. Phys. B 19 077701

    [16]

    Cohen R E 1992 Nature 136 95

    [17]

    Astefanoaei I, Dumitru I, Stancu Al 2013 Chin. Phys. B 22 128102

    [18]

    Zhong W L, Wang Y G, Zhang P L, Qu B D 1994 Phys. Rev. B 50 698

    [19]

    Xue W D, Chen S Y, Yang C, Li Y R 2005 Acta Phys. Sin. 54 857 (in Chinese) [薛卫东, 陈召勇, 杨春, 李言荣 2005 54 857]

    [20]

    Zhang H T, Kang A G, Yang B G, Xue H, Guo X L 2013 Journal of Synthetic Crystals 42 1848 (in Chinese) [张海涛, 康爱国, 杨北革, 薛 辉, 郭小龙 2013 人工晶体学报 42 1848]

    [21]

    Zhang X Y, Li L J, Huang Y C 2014 Acta Phys. Sin. 63 190301 (in Chinese) [章新友, Li L J, 黄永畅 2014 63 190301]

  • [1] 赵婷, 宫毛毛, 张松斌. 氦原子贝塞尔涡旋光电离的理论研究.  , 2024, 73(24): 1-8. doi: 10.7498/aps.73.20241378
    [2] 欧阳鑫健, 张紫阳, 张锋, 张佳乐, 王大威. 用于铁电体复杂畴结构模拟的布朗方程.  , 2023, 72(5): 057502. doi: 10.7498/aps.72.20222150
    [3] 汤卉, 牛翔, 杨志朋, 彭小草, 赵小波, 姚英邦, 陶涛, 梁波, 唐新桂, 鲁圣国. 0.7BiFeO3-0.3BaTiO3陶瓷中极化翻转产生的巨电卡效应增加及Mn4+离子掺杂对其介电、铁电性能的影响.  , 2022, 71(14): 147701. doi: 10.7498/aps.71.20220280
    [4] 鲁圣国, 李丹丹, 林雄威, 简晓东, 赵小波, 姚英邦, 陶涛, 梁波. 铁电材料中电场对唯象系数和电卡强度的影响.  , 2020, 69(12): 127701. doi: 10.7498/aps.69.20200296
    [5] 魏祥, 吴智政, 曹战, 王园园, DzikiMbemba. 基于磁液变形镜生成弯曲轨迹自加速类贝塞尔光束.  , 2019, 68(11): 114701. doi: 10.7498/aps.68.20190063
    [6] 于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣. 贝塞尔-高斯涡旋光束相干合成研究.  , 2018, 67(13): 134203. doi: 10.7498/aps.67.20180325
    [7] 蔡田怡, 雎胜. 铁电体的光伏效应.  , 2018, 67(15): 157801. doi: 10.7498/aps.67.20180979
    [8] 赵娟莹, 邓冬梅, 张泽, 刘京郊, 姜东升. 自加速类贝塞尔-厄米-高斯光束的理论和实验研究.  , 2014, 63(4): 044204. doi: 10.7498/aps.63.044204
    [9] 谢辰, 胡明列, 徐宗伟, 兀伟, 高海峰, 张大鹏, 秦鹏, 王艺森, 王清月. 光纤激光器直接输出的高功率贝塞尔超短脉冲.  , 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [10] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响.  , 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [11] 任志君, 吴琼, 周卫东, 吴根柱, 施逸乐. 空间诱导产生艾里-贝塞尔光弹研究.  , 2012, 61(17): 174207. doi: 10.7498/aps.61.174207
    [12] 尚玉黎, 舒明飞, 陈威, 曹万强. 钛酸钡基施主掺杂弛豫铁电体介电弥散的唯象分析.  , 2012, 61(19): 197701. doi: 10.7498/aps.61.197701
    [13] 吴筱毅, 熊小敏, 张进修. 扭转应变谱及其在相变研究中的应用.  , 2012, 61(1): 014601. doi: 10.7498/aps.61.014601
    [14] 戴玉蓉, 丁德胜. 小瓣数贝塞尔声束的二次谐波.  , 2011, 60(12): 124302. doi: 10.7498/aps.60.124302
    [15] 王英龙, 张鹏程, 刘虹让, 刘保亭, 傅广生. 晶粒尺寸及衬底应力对铁电薄膜特性的影响.  , 2011, 60(7): 077702. doi: 10.7498/aps.60.077702
    [16] 周波, 陈云琳, 刘刚, 詹鹤. 铁电体中新畴成核经典模型的改进.  , 2009, 58(4): 2762-2767. doi: 10.7498/aps.58.2762
    [17] 王渊旭, 王春雷, 袁 敏, 赵明磊, 钟维烈. 光折变晶体KTa0.5Nb0.5O3光学特性的第一性原理研究.  , 2004, 53(9): 3141-3145. doi: 10.7498/aps.53.3141
    [18] 王渊旭, 王春雷, 钟维烈, 赵明磊, 李吉超, 薛旭艳. SrHfO3和SrTiO3光学特性的第一性原理研究.  , 2004, 53(1): 214-217. doi: 10.7498/aps.53.214
    [19] 王渊旭, 钟维烈, 王春雷, 张沛霖. 四方铁电体PbFe0.5Nb0.5O3精细结构的第一性原理研究.  , 2002, 51(1): 171-173. doi: 10.7498/aps.51.171
    [20] 林为干. 贝塞尔函数的近似计算在调频制中的应用.  , 1955, 11(5): 411-420. doi: 10.7498/aps.11.411
计量
  • 文章访问数:  7373
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-02
  • 修回日期:  2015-04-28
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map