搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀磁半导体(Ga, Mn)As薄膜激光诱导超快磁化动力学过程拟合方法探究

李杭 张新惠

引用本文:
Citation:

稀磁半导体(Ga, Mn)As薄膜激光诱导超快磁化动力学过程拟合方法探究

李杭, 张新惠

Analysis of fitting methods for laser-triggered ultrafast magnetization dynamics in diluted magnetic semiocnductor (Ga, Mn)As film

Li Hang, Zhang Xin-Hui
PDF
导出引用
  • 本文对稀磁半导体(Ga, Mn)As薄膜中超快激光诱导磁化动力学响应信号的不同拟合方法进行了对比分析. 通过Landau-Lifshitz-Gilbert(LLG)方程的数值拟合发现, 由于薄膜平面内和平面外磁光响应强度不同, 磁矢量三维进动的叠加可以导致多个频率振动模式的假象. 当使用高于(Ga, Mn)As带边的能量激发时, 磁化进动的磁光响应信号中叠加着来自光极化载流子的响应, 此时单纯利用LLG方程对薄膜整体磁化动力学过程拟合应谨慎使用. 本工作为正确分析和理解脉冲激光对(Ga, Mn)As铁磁性的超快调控提供了拟合方法上的指导.
    Laser-triggered magnetization dynamics for diluted magnetic semiconductor (Ga, Mn)As has drawn great attention in recent years, aiming at studying the ultrafast manipulation of collective spin excitations towards spintronic information processing. In this work, different fitting methods for time-resolved magneto-optical Kerr (TR-MOKE) study of the laser-triggered magnetization dynamics in a diluted magnetic semiconductor (Ga, Mn)As are analyzed and compared. It is known that the exponentially damped cosine harmonic function and the numerical simulation based on Landau-Lifshitz-Gilbert (LLG) equation are usually applied to fit the laser-induced magnetization dynamics from TR-MOKE measurements. Under the specified experimental conditions, it is sometimes hard to fit the TR-MOKE response well with single-mode uniform precession by using the exponentially damped cosine harmonic function. Although the fitting with multiple precession frequencies may usually show much better fitting results, the numerical simulation based on LLG equation reveals that the multi-frequency precessional modes are caused by the superposition of three-dimensional trajectories of magnetization precession with different contributions from the in-plane and out-of-plane magneto-optical response in (Ga, Mn)As. Thus, the multi-frequency precessional modes obtained by adopting the fitting method with exponentially damped cosine harmonic function could be the fake ones. Meanwhile, it is important to note that though the LLG equation can be used to fit the macroscopic magnetization precession well with single frequency, the contribution of pulse-like background response from photo-generated polarized carriers at the above-bandgap excitation is strongly superimposed on the magnetization precession response, and the pulse-like background response cannot be described by LLG equation. Thus one should be cautious of applying LLG equation only to fit the entire TR-MOKE signal, especially when the excitation energy is above the band gap of (Ga, Mn)As. One may combine both fitting methods, namely, fitting with the exponentially damped cosine harmonic function and the LLG simulation by considering both the in-plane and out-of-plane magneto-optical response of (Ga, Mn)As film in order to properly fit the laser-triggered magnetization dynamic response from TR-MOKE measurements. The proper handling of fitting methods helps to extract the dynamic magnetic parameters correctly and to further understand the physical mechanisms for triggering the ultrafast manipulation of collective spin dynamics. This is fundamentally important for developing novel spintronics based on diluted magnetic semiconductor (Ga, Mn)As.
      通信作者: 张新惠, xinhuiz@semi.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB922200)和国家自然科学基金(批准号: 10974195)资助的课题.
      Corresponding author: Zhang Xin-Hui, xinhuiz@semi.ac.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CB922200), and the National Natural Science Foundation of China (Grant No. 10974195).
    [1]

    Dietl T, Awschalom D D, Kaminska M, Ohno H 2008 Spintronics (Elsevier: Amsterdam) p 90-128

    [2]

    Dietl T 2010 Nat. Mater. 9 965

    [3]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731

    [4]

    Hashimoto Y, Kobayashi S, Munekata H 2008 Phys. Rev. Lett. 100 067202

    [5]

    Ji C J, Zhang C Q, Zhao G, Wang W J, Sun G, Yuan H M, Han Q F 2011 Chin. Phys. L 28 097101

    [6]

    Liu X, Lim W L, Dobrowolska M, Furdyna J K, Wojtowicz T 2005 Phys. Rev. B 71 035307

    [7]

    Luo X D, Ji C J, Wang Y Q, Wang J N 2008 Acta Phys. Sin. 57 5277 (in Chinese) [罗向东, 姬长建, 王玉琦, 王建农 2008 57 5277]

    [8]

    Wang D M, Ren Y H, Liu X, Furdyna J K, Grimsditch M, Merlin R 2007 Phys. Rev. B 75 233308

    [9]

    Yu Z, Li X, Long X, Cheng X W, Liu Y, Cao C B 2009 Chin. Phys. B 18 03040

    [10]

    Liu X D, Wang W Z, Gao R X, Zhao J H, Wen J H, Lin W Z, Lai T S 2008 Acta Phys. Sin. 57 3857 (in Chinese) [刘晓东, 王玮竹, 高瑞鑫, 赵建华, 文锦辉, 林位株, 赖天树 2008 57 3857]

    [11]

    Hashimoto Y, Munekata H 2008 Appl. Phys. Lett. 93 202506

    [12]

    Němec P, Rozkotová E, Tesařová N, Trojánek F, De Ranieri E, Olejník K, Zemen J, Novák V, Cukr M, Maly P, Jungwirth T 2012 Nat. Phys. 8 411

    [13]

    Tesařová N, Němec P, Rozkotová E, Zemen J, Janda T, Butkovičová D, Trojánek F, Olejník K, Novák V, Maly P, Jungwirth T 2013 Nat. Photon. 7 492

    [14]

    Oiwa A, Takechi H, Munekata H 2005 J. Supercond. Nov. Magn. 18 9

    [15]

    Kobayashi S, Suda K, Aoyama J, Nakahara D, Munekata H 2010 IEEE Trans. Magn. 46 2470

    [16]

    Takechi H, Oiwa A, Nomura K, Kondo T, Munekata H 2006 Phys. Status Solidi. 3 4267

    [17]

    Wang J, Cotoros I, Dani K M, Liu X, Furdyna J K, Chemla D S 2007 Phys. Rev. Lett. 98 217401

    [18]

    Qi J, Xu Y, Steigerwald A, Liu X, Furdyna J K, Perakis I E, Tolk N H 2009 Phys. Rev. B 79 085304

    [19]

    Qi J, Xu Y, Tolk N H, Liu X, Furdyna J K, Perakis I E 2007 Appl. Phys. Lett. 91 112506

    [20]

    Zemen J, Kučera J, Olejník K, Jungwirth T 2009 Phys. Rev. B 80 155203

    [21]

    Kimel A V, Astakhov G V, Kirilyuk A, Schott G M, Karczewski G, Ossau W, Schmidt G, Molenkamp L W, Rasing T 2005 Phys. Rev. Lett. 94 227203

    [22]

    Tesařová N, Němec P, Rozkotová E, Šubrt J, Reichlová H, Butkovičová D, Trojánek F, Maly P, Novák V, Jungwirth T 2012 Appl. Phys. Lett. 100 102403

    [23]

    Tesařová N, Šubrt J, Maly P, Němec P, Ellis C T, Mukherjee A, Cerne J 2012 Rev. Sci. Instrum. 83 123108

    [24]

    Rozkotová E, Němec P, Sprinzl D, Horodyská P, Trojánek F, Maly P, Novák V, Olejník K, Cukr M, Jungwirth T 2008 IEEE Tran. Magn. 44 2674

    [25]

    Rozkotová E, Němec P, Horodyská P, Sprinzl D, Trojánek F, Maly P, Novák V, Olejník K, Cukr M, Jungwirth T 2008 Appl. Phys. Lett. 92 122507

    [26]

    De Boer T, Gamouras A, March S, Novák V, Hall K C 2012 Phys. Rev. B 85 033202

  • [1]

    Dietl T, Awschalom D D, Kaminska M, Ohno H 2008 Spintronics (Elsevier: Amsterdam) p 90-128

    [2]

    Dietl T 2010 Nat. Mater. 9 965

    [3]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731

    [4]

    Hashimoto Y, Kobayashi S, Munekata H 2008 Phys. Rev. Lett. 100 067202

    [5]

    Ji C J, Zhang C Q, Zhao G, Wang W J, Sun G, Yuan H M, Han Q F 2011 Chin. Phys. L 28 097101

    [6]

    Liu X, Lim W L, Dobrowolska M, Furdyna J K, Wojtowicz T 2005 Phys. Rev. B 71 035307

    [7]

    Luo X D, Ji C J, Wang Y Q, Wang J N 2008 Acta Phys. Sin. 57 5277 (in Chinese) [罗向东, 姬长建, 王玉琦, 王建农 2008 57 5277]

    [8]

    Wang D M, Ren Y H, Liu X, Furdyna J K, Grimsditch M, Merlin R 2007 Phys. Rev. B 75 233308

    [9]

    Yu Z, Li X, Long X, Cheng X W, Liu Y, Cao C B 2009 Chin. Phys. B 18 03040

    [10]

    Liu X D, Wang W Z, Gao R X, Zhao J H, Wen J H, Lin W Z, Lai T S 2008 Acta Phys. Sin. 57 3857 (in Chinese) [刘晓东, 王玮竹, 高瑞鑫, 赵建华, 文锦辉, 林位株, 赖天树 2008 57 3857]

    [11]

    Hashimoto Y, Munekata H 2008 Appl. Phys. Lett. 93 202506

    [12]

    Němec P, Rozkotová E, Tesařová N, Trojánek F, De Ranieri E, Olejník K, Zemen J, Novák V, Cukr M, Maly P, Jungwirth T 2012 Nat. Phys. 8 411

    [13]

    Tesařová N, Němec P, Rozkotová E, Zemen J, Janda T, Butkovičová D, Trojánek F, Olejník K, Novák V, Maly P, Jungwirth T 2013 Nat. Photon. 7 492

    [14]

    Oiwa A, Takechi H, Munekata H 2005 J. Supercond. Nov. Magn. 18 9

    [15]

    Kobayashi S, Suda K, Aoyama J, Nakahara D, Munekata H 2010 IEEE Trans. Magn. 46 2470

    [16]

    Takechi H, Oiwa A, Nomura K, Kondo T, Munekata H 2006 Phys. Status Solidi. 3 4267

    [17]

    Wang J, Cotoros I, Dani K M, Liu X, Furdyna J K, Chemla D S 2007 Phys. Rev. Lett. 98 217401

    [18]

    Qi J, Xu Y, Steigerwald A, Liu X, Furdyna J K, Perakis I E, Tolk N H 2009 Phys. Rev. B 79 085304

    [19]

    Qi J, Xu Y, Tolk N H, Liu X, Furdyna J K, Perakis I E 2007 Appl. Phys. Lett. 91 112506

    [20]

    Zemen J, Kučera J, Olejník K, Jungwirth T 2009 Phys. Rev. B 80 155203

    [21]

    Kimel A V, Astakhov G V, Kirilyuk A, Schott G M, Karczewski G, Ossau W, Schmidt G, Molenkamp L W, Rasing T 2005 Phys. Rev. Lett. 94 227203

    [22]

    Tesařová N, Němec P, Rozkotová E, Šubrt J, Reichlová H, Butkovičová D, Trojánek F, Maly P, Novák V, Jungwirth T 2012 Appl. Phys. Lett. 100 102403

    [23]

    Tesařová N, Šubrt J, Maly P, Němec P, Ellis C T, Mukherjee A, Cerne J 2012 Rev. Sci. Instrum. 83 123108

    [24]

    Rozkotová E, Němec P, Sprinzl D, Horodyská P, Trojánek F, Maly P, Novák V, Olejník K, Cukr M, Jungwirth T 2008 IEEE Tran. Magn. 44 2674

    [25]

    Rozkotová E, Němec P, Horodyská P, Sprinzl D, Trojánek F, Maly P, Novák V, Olejník K, Cukr M, Jungwirth T 2008 Appl. Phys. Lett. 92 122507

    [26]

    De Boer T, Gamouras A, March S, Novák V, Hall K C 2012 Phys. Rev. B 85 033202

  • [1] 王露璇, 刘奕彤, 史方圆, 祁纤雯, 沈涵, 宋瑛林, 方宇. $\boldsymbol\beta$-Ga2O3晶体本征缺陷诱导的宽带超快光生载流子动力学.  , 2023, 72(21): 214202. doi: 10.7498/aps.72.20231173
    [2] 姜聪颖, 孙飞, 冯子力, 刘世炳, 石友国, 赵继民. 三重简并拓扑半金属磷化钼的时间分辨超快动力学.  , 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [3] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究.  , 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [4] 徐大庆, 李培咸, 娄永乐, 岳改丽, 张超, 张岩, 刘宁庄, 杨波. 空位缺陷及Mg替位对纤锌矿(Ga,Mn)N电子结构和磁光性能的影响.  , 2016, 65(19): 197501. doi: 10.7498/aps.65.197501
    [5] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长.  , 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [6] 谷晓芳, 钱轩, 姬扬, 陈林, 赵建华. (Ga,Mn)As中电流诱导自旋极化的磁光Kerr测量.  , 2012, 61(3): 037801. doi: 10.7498/aps.61.037801
    [7] 蔡培阳, 冯尚申, 陈卫平, 薛双喜, 李志刚, 周英, 王海波, 王古平. Ni47Mn32Ga21多晶合金的磁熵变和磁感生应变.  , 2011, 60(10): 107501. doi: 10.7498/aps.60.107501
    [8] 金伟, 万振茂, 刘要稳. 自旋转移矩效应激发的非线性磁化动力学.  , 2011, 60(1): 017502. doi: 10.7498/aps.60.017502
    [9] 杨威, 姬扬, 罗海辉, 阮学忠, 王玮竹, 赵建华. Curie温度附近稀磁半导体(Ga,Mn)As的电学噪声谱性质.  , 2009, 58(12): 8560-8565. doi: 10.7498/aps.58.8560
    [10] 高瑞鑫, 徐振, 陈达鑫, 徐初东, 陈志峰, 刘晓东, 周仕明, 赖天树. GdFeCo磁光薄膜中RE-TM反铁磁耦合与激光感应超快磁化翻转动力学研究.  , 2009, 58(1): 580-584. doi: 10.7498/aps.58.580
    [11] 吕兆承, 李广. 热磁预处理对Ni-Mn-Ga单晶磁学和力学性能的影响.  , 2009, 58(4): 2746-2751. doi: 10.7498/aps.58.2746
    [12] 任 敏, 张 磊, 胡九宁, 邓 宁, 陈培毅. 基于磁动力学方程的电流感应磁化翻转效应的宏观模型.  , 2007, 56(5): 2863-2867. doi: 10.7498/aps.56.2863
    [13] 刘喜斌, 沈保根. Mn5Ge2.7M0.3 (M=Ga,Al,Sn) 化合物的磁性和磁熵变.  , 2005, 54(12): 5884-5889. doi: 10.7498/aps.54.5884
    [14] 郭世海, 张羊换, 赵增祺, 李健靓, 王新林. 定向凝固生长对Ni-Mn-Ga-RE (RE=TbSm)合金磁感生应变的影响.  , 2004, 53(5): 1599-1603. doi: 10.7498/aps.53.1599
    [15] 郭旭光, 陈效双, 孙沿林, 周孝好, 孙立忠, 陆 卫. (Ga,Mn)As 体系中Mn自补偿效应的第一性原理研究.  , 2004, 53(10): 3545-3549. doi: 10.7498/aps.53.3545
    [16] 崔玉亭, 柳祝红, 王文洪, 张 铭, 陈京兰, 王万录, 吴光恒, 孟凡斌, 曲静萍, 李养贤. Ni52Mn24Ga24单晶中取向内应力的热动力学计算.  , 2003, 52(7): 1726-1731. doi: 10.7498/aps.52.1726
    [17] 王文洪, 柳祝红, 陈京兰, 吴光恒, 梁婷, 徐惠彬, 蔡伟, 郑玉峰, 赵连城. 铁磁形状记忆合金Ni52.5Mn23.5Ga24马氏体相变热滞后的研究.  , 2002, 51(3): 635-639. doi: 10.7498/aps.51.635
    [18] 高淑侠, 王文洪, 柳祝红, 陈京兰, 吴光恒, 梁婷, 徐惠彬, 蔡伟, 郑玉峰, 赵连城. 铁磁形状记忆合金Ni52.2Mn23.8Ga24的马氏体相变及其物理表征.  , 2002, 51(2): 332-336. doi: 10.7498/aps.51.332
    [19] 柳祝红, 胡凤霞, 王文洪, 陈京兰, 吴光恒, 高书侠, 敖玲. 哈斯勒合金Ni-Mn-Ga的马氏体相变和磁增强双向形状记忆效应.  , 2001, 50(2): 233-238. doi: 10.7498/aps.50.233
    [20] 刘友文, 刘立人, 郭迎春, 周常河. 双掺杂LiNbO3:Fe:Mn全息存储动力学.  , 2000, 49(5): 880-886. doi: 10.7498/aps.49.880
计量
  • 文章访问数:  5906
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-25
  • 修回日期:  2015-05-09
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map