搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高气压空气环状感性耦合等离子体实验研究和参数诊断

魏小龙 徐浩军 李建海 林敏 宋慧敏

引用本文:
Citation:

高气压空气环状感性耦合等离子体实验研究和参数诊断

魏小龙, 徐浩军, 李建海, 林敏, 宋慧敏

Experimental investigation and parameter diagnosis of air high-pressure ring-shaped inductively coupled plasma

Wei Xiao-Long, Xu Hao-Jun, Li Jian-Hai, Lin Min, Song Hui-Min
PDF
导出引用
  • 等离子体的电子密度分布, 电子碰撞频率分布, 覆盖面积, 厚度是影响其覆盖目标电磁散射特征的关键属性. 对此, 本文开展了在20 cm×20 cm×7 cm石英腔内感性耦合等离子体(ICP)的放电实验, 观察了在高气压条件下, 空气ICP的环形放电形态, E-H模式跳变现象和分层结构, 测量了其电负性核心区和电正性边缘区宽度和厚度随功率、气压的变化趋势, 并通过COMSOL Multiphysics对平板线圈磁场强度分布的分析和电负性气体扩散理论给予上述现象合理的解释, 同时, 利用微波透射干涉法测量了核心区域的电子密度随功率和气压的变化曲线, 利用理论模型计算了边缘区域的电子密度分布, 最后通过辅助气体Ar发射谱线的玻尔兹曼图形法得到了核心区和边缘区的电子激发温度.
    The variable parameters like electron destiny (ne), electron collision frequency, covered-area and thickness have been regarded as the key factors for the electromagnetic scattering characteristics of the covering target. Therefore, an air inductively coupled plasma (ICP) generator of all-quartz chamber of 20 cm × 20 cm × 7 cm without magnetic confinement and grounded metal surface of substantial area is designed and conducted to study the discharge process and diagnose the parameters in this paper. The shape, E-H mode transition, and structure of inductively coupled plasma are observed, and the width and thickness change due to change of power and pressure are measured in experiments. Results show that the plasma is nearly uniformly full of the chamber in E-mode, while the shape of plasma rapidly changes to a ring in H-mode and the structure of inductively coupled plasma stratified into an electronegative core and an electropositive halo. It is observed clearly that the luminance of plasma increases slowly with the RF power in E-mode, but increases significantly in H-mode, which are proved through the relative spectral intensity variation of nitrogen 337.1 nm spectral lines due to the change of power and pressure. The width and thickness of the core region increase significantly with power, while decrease apparently with increasing pressure, which could be logically explained by the variation of RF magnetic induction amplitude distribution with power and by the theoretical diffusion analyses of electronegative gas. Since a mass of oxygen electronegative ion exists in the air inductively coupled plasma, the electron density (ne) diffusion models are different for the electronegative core and the electropositive halo. It is proved also by the theoretical drift-diffusion analyses that the electron density is distributed nearly uniformly in the electronegative core and decreased sharply in the electropositive halo. The model of electromagnetic wave propagation in the ICP generator is given and the microwave interferometry is discussed in detail. The electron density in the core region under different discharge conditions is diagnosed by microwave interferometer and the electron density of edge halo is calculated by using the high-pressure diffusion model. And the electron density increases with increasing power and pressure, which range from 0.65×1011 to 3.71×1011 cm-3. But decay rate of electron density in the halo is less affected by the power at 100 Pa, while the rate is accelerated with increasing pressure. Finally, the electronic excitation temperature of the electronegative core and the electropositive halo are diagnosed by Boltzmann graphic method using emissive spectrum of auxiliary Ar. Results show that the electronic excitation temperature of the core, which ranges from 4201 to 4390 K, increases with increasing power, but decreases with increasing pressure.
      通信作者: 魏小龙, 18991965625@163.com
    • 基金项目: 国家自然科学基金(批准号: 11472306)资助的课题.
      Corresponding author: Wei Xiao-Long, 18991965625@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11472306).
    [1]

    Yang M, Li X P, Xie K, Liu Y M, Liu D L 2013 Physics of Plasmas 20 012101

    [2]

    Anurag Mishra A, Geun Young Yeom. 2013 Surface & Coatings Technology 237 2549

    [3]

    Lin M, Xu H J, Su C, Liang H, Wei X L 2014 Spectroscopy and Spectral Analysis. 34 1594 (in Chinese) [林敏, 徐浩军, 苏晨, 梁华, 魏小龙 2014 光谱学与光谱分析 34 1594]

    [4]

    Lee M H, Chung C W 2006 Physics of Plasmas. 13 063510

    [5]

    Di X L, Xin Y, Ning Z Y 2006 Acta Phys. Sin. 55 5311 (in Chinese) [狄小莲, 辛煜, 宁兆元 2006 55 5311]

    [6]

    Du Y C, Cao J X, Wang J, Zheng Z, Liu Y, Meng G, Ren A M, Zhang S J 2012 Acta Phys. Sin. 61 195206 (in Chinese) [杜寅昌, 曹金祥, 汪建, 郑哲, 刘宇, 孟刚, 任爱民, 张生俊 2012 61 195206]

    [7]

    Berndt J, Kovačević E, Selenin1 V, Stefanović2 I, Winter J 2006 Plasma Sources Sci. Technol. 15 18

    [8]

    Andrasch M, Ehlbeck J, Foest R, Weltmann K D 2012 Plasma Sources Sci. Technol. 21 055032

    [9]

    Zhao W H, Li J Q, Yang J D 1997 IEEE Transactions on Plasma Science 25 828

    [10]

    Khan A W, Janc F, Saeed A, Zaka-ul-Islam M, Abrar M, Khattak N A D, Zakaullah M 2013 Current Applied Physics 13 1241

    [11]

    Hopwood J, Guarnieri C R, Whitehair S J, Cuomo J J 1993 Journal of Vacuum Science & Technology A 11 152

    [12]

    Vender D, Stoffels W W, Stoffels E, Kroesen G M W, de Hoog F F 1995 Phys. Rev. E 51 2436

    [13]

    Thomson B J 1959 Proc. Phys. Soc. 73 818

    [14]

    Huang M, Lehn S A, Andrews E J, Hieftje G M 1997 Spectrochimica Acta Part B 52 1173

    [15]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (Hoboken, New Jersey) p340-360

    [16]

    Lee Y W, Lee H L, Chung T H 2011 Journal of Applied Physics 109 113302

    [17]

    Berezjnoj S V, Shin C B, Buddemeier U, Kaganovich I 2000 Appl. Phys. Lett. 77 800

    [18]

    Stoffels E, Stoffels W W, Vender D, Kroesen G M W, de Hoog F J 1994 IEEE Trans. Plasma Sci. 22 116

    [19]

    Liu M H, Hu X W, Jiang Z G, Zhang S, Lan C H 2007 Journal of Applied Physics 101 053308

    [20]

    Pereda J A, Vegas A, Prieto A 2002 IEEE Trans. Microwave Theory and Techniques 50 1689

    [21]

    Lee H C, Lee J K, Chung C W 2010 Physics of Plasmas 17 033506

    [22]

    Materer N, Goodman Rory S, Leone S R 1998 Journal of Applied Physics 83 1917

    [23]

    McDaniel E W 1964 Collision Phenomena in Ionized Gases (New York: Wiley) p203

    [24]

    Scott A Lehn, Kelly A Warner, Mao Huang, Gary M Hieftje. 1997 Spectrochimica Acta Part B 57 1739

  • [1]

    Yang M, Li X P, Xie K, Liu Y M, Liu D L 2013 Physics of Plasmas 20 012101

    [2]

    Anurag Mishra A, Geun Young Yeom. 2013 Surface & Coatings Technology 237 2549

    [3]

    Lin M, Xu H J, Su C, Liang H, Wei X L 2014 Spectroscopy and Spectral Analysis. 34 1594 (in Chinese) [林敏, 徐浩军, 苏晨, 梁华, 魏小龙 2014 光谱学与光谱分析 34 1594]

    [4]

    Lee M H, Chung C W 2006 Physics of Plasmas. 13 063510

    [5]

    Di X L, Xin Y, Ning Z Y 2006 Acta Phys. Sin. 55 5311 (in Chinese) [狄小莲, 辛煜, 宁兆元 2006 55 5311]

    [6]

    Du Y C, Cao J X, Wang J, Zheng Z, Liu Y, Meng G, Ren A M, Zhang S J 2012 Acta Phys. Sin. 61 195206 (in Chinese) [杜寅昌, 曹金祥, 汪建, 郑哲, 刘宇, 孟刚, 任爱民, 张生俊 2012 61 195206]

    [7]

    Berndt J, Kovačević E, Selenin1 V, Stefanović2 I, Winter J 2006 Plasma Sources Sci. Technol. 15 18

    [8]

    Andrasch M, Ehlbeck J, Foest R, Weltmann K D 2012 Plasma Sources Sci. Technol. 21 055032

    [9]

    Zhao W H, Li J Q, Yang J D 1997 IEEE Transactions on Plasma Science 25 828

    [10]

    Khan A W, Janc F, Saeed A, Zaka-ul-Islam M, Abrar M, Khattak N A D, Zakaullah M 2013 Current Applied Physics 13 1241

    [11]

    Hopwood J, Guarnieri C R, Whitehair S J, Cuomo J J 1993 Journal of Vacuum Science & Technology A 11 152

    [12]

    Vender D, Stoffels W W, Stoffels E, Kroesen G M W, de Hoog F F 1995 Phys. Rev. E 51 2436

    [13]

    Thomson B J 1959 Proc. Phys. Soc. 73 818

    [14]

    Huang M, Lehn S A, Andrews E J, Hieftje G M 1997 Spectrochimica Acta Part B 52 1173

    [15]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (Hoboken, New Jersey) p340-360

    [16]

    Lee Y W, Lee H L, Chung T H 2011 Journal of Applied Physics 109 113302

    [17]

    Berezjnoj S V, Shin C B, Buddemeier U, Kaganovich I 2000 Appl. Phys. Lett. 77 800

    [18]

    Stoffels E, Stoffels W W, Vender D, Kroesen G M W, de Hoog F J 1994 IEEE Trans. Plasma Sci. 22 116

    [19]

    Liu M H, Hu X W, Jiang Z G, Zhang S, Lan C H 2007 Journal of Applied Physics 101 053308

    [20]

    Pereda J A, Vegas A, Prieto A 2002 IEEE Trans. Microwave Theory and Techniques 50 1689

    [21]

    Lee H C, Lee J K, Chung C W 2010 Physics of Plasmas 17 033506

    [22]

    Materer N, Goodman Rory S, Leone S R 1998 Journal of Applied Physics 83 1917

    [23]

    McDaniel E W 1964 Collision Phenomena in Ionized Gases (New York: Wiley) p203

    [24]

    Scott A Lehn, Kelly A Warner, Mao Huang, Gary M Hieftje. 1997 Spectrochimica Acta Part B 57 1739

  • [1] 马平, 田径, 田得阳, 张宁, 吴明兴, 唐璞. 应用于超高速流场电子密度分布测量的七通道微波干涉仪测量系统.  , 2024, 73(17): 172401. doi: 10.7498/aps.73.20240656
    [2] 颜劭祺, 高继昆, 陈越, 马尧, 朱晓东. 电子束透射氮化硅薄膜窗产生低密度等离子体.  , 2024, 73(14): 144102. doi: 10.7498/aps.73.20240302
    [3] 王倩, 范元媛, 赵江山, 刘斌, 亓岩, 颜博霞, 王延伟, 周密, 韩哲, 崔惠绒. 准分子激光器预电离过程影响分析.  , 2023, 72(19): 194201. doi: 10.7498/aps.72.20230731
    [4] 刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华. 等离子体风洞中释放二氧化碳降低电子密度.  , 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [5] 冯博文, 王若愚, 马雨彭雪, 钟晓霞. 常压针-板放电等离子体密度演化.  , 2021, 70(9): 095201. doi: 10.7498/aps.70.20201790
    [6] 王浩若, 张冲, 张宏超, 沈中华, 倪晓武, 陆健. 超短脉冲激光与微小水滴相互作用中电子密度和光场的时空分布.  , 2017, 66(12): 127801. doi: 10.7498/aps.66.127801
    [7] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度.  , 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [8] 赵永蓬, 李连波, 崔怀愈, 姜杉, 刘涛, 张文红, 李伟. 毛细管放电69.8nm激光强度空间分布特性研究.  , 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [9] 林敏, 徐浩军, 魏小龙, 梁华, 张艳华. 电磁波在非磁化等离子体中衰减效应的实验研究.  , 2015, 64(5): 055201. doi: 10.7498/aps.64.055201
    [10] 何寿杰, 哈静, 刘志强, 欧阳吉庭, 何锋. 流体-亚稳态原子传输混合模型模拟空心阴极放电特性.  , 2013, 62(11): 115203. doi: 10.7498/aps.62.115203
    [11] 洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜. 电负性气体的掺入对容性耦合Ar等离子体的影响.  , 2013, 62(11): 115202. doi: 10.7498/aps.62.115202
    [12] 刘可, 易佑民, 李良波. 延迟双脉冲激光产生大气等离子体的实验研究.  , 2012, 61(22): 225205. doi: 10.7498/aps.61.225205
    [13] 苏元军, 徐军, 朱明, 范鹏辉, 董闯. 利用等离子体辅助脉冲磁控溅射实现多晶硅薄膜的低温沉积.  , 2012, 61(2): 028104. doi: 10.7498/aps.61.028104
    [14] 邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量.  , 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [15] 董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞. 大气压等离子体炬电子密度的光谱诊断.  , 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [16] 王巍, 蒋刚. 基于双激发态对稠密等离子体中双电子复合速率系数的研究.  , 2010, 59(11): 7815-7823. doi: 10.7498/aps.59.7815
    [17] 严建华, 屠 昕, 马增益, 潘新潮, 岑可法, Cheron Bruno. 大气压直流氩等离子体射流工作特性研究.  , 2006, 55(7): 3451-3457. doi: 10.7498/aps.55.3451
    [18] 傅喜泉, 郭 弘. x射线激光在激光等离子体中传输变化及其对诊断的影响.  , 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [19] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布.  , 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [20] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较.  , 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
计量
  • 文章访问数:  6569
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-18
  • 修回日期:  2015-03-26
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map