搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

欧拉圆盘不同能量耗散机理之间的关联

朱攀丞 边庆勇 李晋斌

引用本文:
Citation:

欧拉圆盘不同能量耗散机理之间的关联

朱攀丞, 边庆勇, 李晋斌

Relations among different energy dissipations of Euler disk

Zhu Pan-Cheng, Bian Qing-Yong, Li Jin-Bin
PDF
导出引用
  • 本文研究了欧拉圆盘运动过程中盘厚度以及盘面与水平面夹角α两因素对能量耗散的影响. 得出圆盘厚度与直径之比x对能量变化中各项因子的影响: x很小时, 质心在竖直方向上的动能变化和重力势能变化是系统能量耗散的主要因素; 当x>0.4142时, 圆盘绕与之平行的轴的转动动能变化成为主要因素, 并给出圆盘厚度可忽略的条件. 模拟了滚动摩擦、空气黏滞等不同能量耗散方式与x,α的关系, 导出各种耗散方式在圆盘运动的过程中的转变规律, 并指出x=0.1733, α>18°时能量耗散形式为纯滚动摩擦, 这修正了文献[26]结论.
    The energy dissipation of a disc spinning on a horizontal plane is studied, as the angle α of the coin made with the horizontal plane decreases, while the angular velocity Ω of the point of contact increases. Effect of the ratio x between the thickness and diameter of an Euler disc and the α on the energy dissipation is studied. We find, by using numerical simulation, that when x is small enough, the lose of the kinetic energy and the gravitational potential energy of the mass center is dominant in energy dissipations; when x>0.4142, the rotational kinetic energy dissipation of the disc around the axis that is parallel to the disc surface, is the leading factor. The requirements in which thickness can be neglected are also obtained, and they can give some hints to the relevant theories and experiments. Our results show that when α≥10° and b/a[26] data very well. We also discuss the main energy dissipation distributed among different forms: variation of rolling friction and viscous shear of the air with x and α, also show their transition in the process of the motion. Furthermore, we find that the pure rolling friction is the unique dissipation as x=0.1733 and α>18°, which improves the results obtained before. We speculate that the dominant dissipation is the gliding friction in the final stage of the motion, because when the disc is motionless, one face of the disc lies absolutely in contact with the horizontal surface just before the disc halts. One can assume that they are in contact completely but the disc does not halt, thus axis 1 and axis Z are almost in the same direction. In this case, the energy dissipation of the Euler disc is due to the gliding friction. To some extent, this accounts for the disc final halt.
      通信作者: 李晋斌, jinbin@nuaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11104143)和大学生创新训练计划项目(批准号: 2015CX00808)资助的课题.
      Corresponding author: Li Jin-Bin, jinbin@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11104143) and the Undergraduate Training Programs for Innovation (Grant No. 2015CX00808).
    [1]

    Zhang H J, Brogliato B 2011 INRIA Research Report 7580

    [2]

    Routh E J 1905 The Advanced Part of a Treatise on the Dynamics of Rigid Bodies, 6th ed (Cambridge: Cambridge University Press) pp196

    [3]

    Milne E A 1948 Vectorial Mechanics 338

    [4]

    Fowles G R, Cassiday G L 1999 Analytical Mechanics, 6th ed(Cambridge: Cambridge University Press) pp383

    [5]

    Olsson M G 1972 Am. J. Phys. 40 1543

    [6]

    Moffatt H K 2000 Nature 404 833

    [7]

    van der Engh G, Nelson P, Roach J 2000 Nature 408 540

    [8]

    Zhang H J, Liu C 2012 Program and Abstract Book of the sixth Asian Conference on Multibody Dynamics Shanghai, August 26-30, 2012 p129

    [9]

    Liu C, Zhao Z, Brogliato B 2008 Proc. R. Soc. A 464 3193

    [10]

    Liu C, Zhao Z, Brogliato B 2009 Proc. R. Soc. A 465 1

    [11]

    Zhao Z, Liu C, Brogliato B 2009 Proc. R. Soc. A 465 2267

    [12]

    Liu C, Zhang H, Zhao Z, Brogliato B 2013 Proc. R. Soc. A 469 20120741

    [13]

    Ma D, Liu C, Zhao Z, Zhang H J 2014 Proc. R. Soc. A 470 20140191

    [14]

    Zhao Z, Liu C, Ma D 2014 Proc. R. Soc. A 470 20140007

    [15]

    Le Saux C, Leine R, Glocker C 2005 Sci. 15 27

    [16]

    Borisov A V, Mamaev I S, Karavaev Y L 2015 Nonlinear Dynamics 79 2287

    [17]

    Wang J, Liu C, Zhao Z 2014 Multibody System Dynamics 32 217

    [18]

    Wang J, Liu C, Jia Y, Ma D 2014 The European Physical Journal E. 37 1

    [19]

    Wang J, Liu C, Ma D 2014 Proc. R. Soc. A 470 20140439

    [20]

    Zhang H, Brogliato B, Liu C 2014 Multibody System Dynamics 32 1

    [21]

    Stanislavsky A A, Weron K 2011 Physica D 156 247

    [22]

    Srinivasan M, Ruina A 2008 Phys. Rev. E 78 066609

    [23]

    Weidman P, Malhotra C 2005 Phys. Rev. Lett 95 264303

    [24]

    Leine R I 2009 Arch. Appl. Mech. 79 1063

    [25]

    McDonald A J, McDonald K T 2001 arXiv:0008227 [physics]

    [26]

    Petrie D, Hunt J L, Gray C G 2002 American Journal of Physics 70 1025

    [27]

    Zhong H, Lee C, Su Z, Chen S, Zhou M, Wu J 2013 J. Fluid Mech. 716 228

  • [1]

    Zhang H J, Brogliato B 2011 INRIA Research Report 7580

    [2]

    Routh E J 1905 The Advanced Part of a Treatise on the Dynamics of Rigid Bodies, 6th ed (Cambridge: Cambridge University Press) pp196

    [3]

    Milne E A 1948 Vectorial Mechanics 338

    [4]

    Fowles G R, Cassiday G L 1999 Analytical Mechanics, 6th ed(Cambridge: Cambridge University Press) pp383

    [5]

    Olsson M G 1972 Am. J. Phys. 40 1543

    [6]

    Moffatt H K 2000 Nature 404 833

    [7]

    van der Engh G, Nelson P, Roach J 2000 Nature 408 540

    [8]

    Zhang H J, Liu C 2012 Program and Abstract Book of the sixth Asian Conference on Multibody Dynamics Shanghai, August 26-30, 2012 p129

    [9]

    Liu C, Zhao Z, Brogliato B 2008 Proc. R. Soc. A 464 3193

    [10]

    Liu C, Zhao Z, Brogliato B 2009 Proc. R. Soc. A 465 1

    [11]

    Zhao Z, Liu C, Brogliato B 2009 Proc. R. Soc. A 465 2267

    [12]

    Liu C, Zhang H, Zhao Z, Brogliato B 2013 Proc. R. Soc. A 469 20120741

    [13]

    Ma D, Liu C, Zhao Z, Zhang H J 2014 Proc. R. Soc. A 470 20140191

    [14]

    Zhao Z, Liu C, Ma D 2014 Proc. R. Soc. A 470 20140007

    [15]

    Le Saux C, Leine R, Glocker C 2005 Sci. 15 27

    [16]

    Borisov A V, Mamaev I S, Karavaev Y L 2015 Nonlinear Dynamics 79 2287

    [17]

    Wang J, Liu C, Zhao Z 2014 Multibody System Dynamics 32 217

    [18]

    Wang J, Liu C, Jia Y, Ma D 2014 The European Physical Journal E. 37 1

    [19]

    Wang J, Liu C, Ma D 2014 Proc. R. Soc. A 470 20140439

    [20]

    Zhang H, Brogliato B, Liu C 2014 Multibody System Dynamics 32 1

    [21]

    Stanislavsky A A, Weron K 2011 Physica D 156 247

    [22]

    Srinivasan M, Ruina A 2008 Phys. Rev. E 78 066609

    [23]

    Weidman P, Malhotra C 2005 Phys. Rev. Lett 95 264303

    [24]

    Leine R I 2009 Arch. Appl. Mech. 79 1063

    [25]

    McDonald A J, McDonald K T 2001 arXiv:0008227 [physics]

    [26]

    Petrie D, Hunt J L, Gray C G 2002 American Journal of Physics 70 1025

    [27]

    Zhong H, Lee C, Su Z, Chen S, Zhou M, Wu J 2013 J. Fluid Mech. 716 228

  • [1] 杜清馨, 孙其诚, 丁红胜, 张国华, 范彦丽, 安飞飞. 垂直振动下干湿颗粒样品的体积模量与耗散.  , 2022, 71(18): 184501. doi: 10.7498/aps.71.20220329
    [2] 梁德山, 黄厚兵, 赵亚楠, 柳祝红, 王浩宇, 马星桥. 拓扑荷在圆盘状向列相液晶薄膜中的尺寸效应.  , 2021, 70(4): 044202. doi: 10.7498/aps.70.20201623
    [3] 牛青辰, 苟君, 王军, 蒋亚东. 钛圆盘阵列增强微测辐射热计太赫兹波吸收特性.  , 2019, 68(20): 208501. doi: 10.7498/aps.68.20190902
    [4] 王世伟, 朱朋哲, 李瑞. 界面羟基对碳纳米管摩擦行为和能量耗散的影响.  , 2018, 67(7): 076101. doi: 10.7498/aps.67.20180311
    [5] 刘晓宇, 张国华, 孙其诚, 赵雪丹, 刘尚. 二维圆盘颗粒体系声学行为的数值研究.  , 2017, 66(23): 234501. doi: 10.7498/aps.66.234501
    [6] 孙棣华, 康义容, 李华民. 驾驶员预估效应下车流能耗演化机理研究.  , 2015, 64(15): 154503. doi: 10.7498/aps.64.154503
    [7] 余田, 张国华, 孙其诚, 赵雪丹, 马文波. 垂直振动激励下颗粒材料有效质量和耗散功率的研究.  , 2015, 64(4): 044501. doi: 10.7498/aps.64.044501
    [8] 何菲菲, 彭政, 颜细平, 蒋亦民. 振动颗粒混合物中的周期性分聚现象与能量耗散.  , 2015, 64(13): 134503. doi: 10.7498/aps.64.134503
    [9] 王兵, 文光俊, 王文祥. 同轴交错圆盘加载波导慢波结构高频特性的研究.  , 2014, 63(22): 224101. doi: 10.7498/aps.63.224101
    [10] 刘中淼, 孙其诚, 宋世雄, 史庆藩. 准静态颗粒流流动规律的热力学分析.  , 2014, 63(3): 034702. doi: 10.7498/aps.63.034702
    [11] 张小丽, 林书玉, 付志强, 王勇. 弯曲振动薄圆盘的共振频率和等效电路参数研究.  , 2013, 62(3): 034301. doi: 10.7498/aps.62.034301
    [12] 陈林根, 冯辉君, 谢志辉, 孙丰瑞. 微、纳米尺度下圆盘(火积)耗散率最小构形优化.  , 2013, 62(13): 134401. doi: 10.7498/aps.62.134401
    [13] 梁家源, 滕维中, 薛郁. 宏观交通流模型的能耗研究.  , 2013, 62(2): 024706. doi: 10.7498/aps.62.024706
    [14] 彭政, 蒋亦民, 刘锐, 厚美瑛. 垂直振动激发下颗粒物质的能量耗散.  , 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [15] 陈帝伊, 申滔, 马孝义. 参数不定的旋转圆盘在有界扰动下混沌振动的滑模变结构控制.  , 2011, 60(5): 050505. doi: 10.7498/aps.60.050505
    [16] 贺西平. 弯曲振动阶梯圆盘辐射阻抗的计算方法.  , 2010, 59(5): 3290-3293. doi: 10.7498/aps.59.3290
    [17] 潘晓娟, 贺西平. 厚圆盘弯曲振动研究.  , 2010, 59(11): 7911-7916. doi: 10.7498/aps.59.7911
    [18] 丁凌云, 龚中良, 黄平. 声子摩擦能量耗散机理研究.  , 2009, 58(12): 8522-8528. doi: 10.7498/aps.58.8522
    [19] 袁常青, 赵同军, 王永宏, 展 永. 有限体系能量耗散运动的功率谱分析.  , 2005, 54(12): 5602-5608. doi: 10.7498/aps.54.5602
    [20] 麦振洪, 毛再先, 阳述林. 旋转圆盘下的流场解及熔硅中溶质有效分凝系数的计算.  , 1991, 40(6): 935-942. doi: 10.7498/aps.40.935
计量
  • 文章访问数:  7532
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-06
  • 修回日期:  2015-04-13
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map