搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于简正波模态频散的远距离宽带海底参数反演方法

郭晓乐 杨坤德 马远良

引用本文:
Citation:

一种基于简正波模态频散的远距离宽带海底参数反演方法

郭晓乐, 杨坤德, 马远良

A far distance wideband geoacoustic parameter inversion method based on a modal dispersion curve

Guo Xiao-Le, Yang Kun-De, Ma Yuan-Liang
PDF
导出引用
  • 在浅海环境中, 海底环境参数对声传播有着重要的影响. 由于利用单个宽带声源进行海底参数反演时, 随着距离的增大, 误差变大, 本文提出利用warping变换对在浅海波导中传播的, 不同距离上的两个宽带爆炸声源进行简正波的有效分离, 实现了宽带爆炸声源的远距离海底参数反演. 采用全局寻优遗传算法对提取出的模态频散到达时间差与理论计算的模态频散到达时间差进行匹配处理, 并结合随距离连续变化的声传播损失, 实现了利用单水听器进行海底参数的反演. 实验结果表明: 运用反演出的海底参数提取模态频散时间差和实测数据提取出的模态频散时间差吻合得较好; 而通过传播损失反演得到的海底衰减系数与频率呈指数关系. 最后, 对反演结果进行了后验概率分析, 并将本组爆炸声源的反演结果用于另一组不同距离上爆炸声源时仍然有效, 来评价反演结果的有效性.
    Acoustic propagation in shallow water is greatly influenced by the properties of the sea bottom. The dispersion characteristics of modes are relatively sensitive to the bottom parameters and have been used to invert the bottom parameters. Since the inversion error using a single wideband sound source increases with increasing range, a far distance inversion method based on the modal dispersion curve using a single hydrophone with two wideband sound sources is presented in this paper, in which a warping transform is applied so that it can accurately extract the modal dispersion curve from the warped signal spectrum. Experimental data used for the inversion are acquired using a hydrophone of vertical array in the South Sea of China during the Autumn in 2012. The transmitted signals are explosive signals, and the bottom sound speed and density are inverted by matching the theoretical arrival time differences of various modes and frequencies with those calculated using the experimental data. The attenuation coefficient is deduced using the transmission loss data recorded in the experiment. A genetic algorithm (GA) is used for optimization search for the parameter bounds. Inversion results demonstrate that the arrival time difference when using the bottom sound speed and density show a high consistency with those obtained using the experimental data. Moreover, the attenuation coefficient is nonlinear over the frequency band from 100 to 315 Hz. The validity of inverted parameters is evaluated by the posteriori probability distributions, and the numerical results of arrival time differences calculated using the inverted sound speed and density are in good agreement with those extracted from the other two wideband explosive signals at different distances. In addition, the theoretical transmission loss calculated using the inverted attenuation coefficient matches the experiment data very well. It is shown that the inversion scheme can provide a valid and stable environmental estimation.
      通信作者: 杨坤德, ykdzym@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11174235)和中央高校基本科研业务费专项资金(批准号: 3102014JC02010301)资助的课题.
      Corresponding author: Yang Kun-De, ykdzym@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174235), and the Fundamental Research Funds for the central Universities of Ministry of Education of China (Grant No. 3102014JC02010301).
    [1]

    Duan R, Yang K D, Ma Y L, Lei B 2012 Chin Phys. B 21 124301

    [2]

    Gac J L, Asch M, Stephan Y, Demoulin X 2003 IEEE J. Oceanic Engineer. 28 479

    [3]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 63 044303]

    [4]

    Baraniuk R, Jones D 1995 IEEE Trans. Signal Proc. 43 2269

    [5]

    Bonnel J, Nicolas B, Mars J I, Walker S C 2010 J. Acoust. Soc. Am. 128 719

    [6]

    Bonnel J, Chapman N 2011 J. Acoust. Soc. Am. 130 EL101

    [7]

    Lu L C, Ma L 2015 Acta Phys. Sin. 64 024305 (in Chinese) [鹿力成, 马力 2015 64 024305]

    [8]

    Li Z L, Zhang R H 2007 Chin. Phys. Lett. 24 471

    [9]

    Li Z L, Yan J, Li F H, Guo L H 2002 Acta Acoust. 27 487 (in Chinese) [李整林, 鄢锦, 李风华, 郭良浩 2002 声学学报 27 487]

    [10]

    Zhang X L, Li Z L, Huang X D 2009 Acta Acoust. 34 54 (in Chinese) [张学磊, 李整林, 黄晓砥 2009 声学学报 34 54]

    [11]

    Gerstoft P 1994 J. Acoust. Soc. Am. 95 770

    [12]

    Gerstoft P, Mechlenbrauker C F 1998 J. Acoust. Soc. Am. 104 808

    [13]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2000 Computational Ocean Acoustics ( Vol. 2) (New York: American Institute of Physics) p67

    [14]

    Tolstoy I, Clay C 1987 Theory and Experiment in Underwater Sound ( Vol. 2) (New York: Acoustical Society of American)

    [15]

    Duda R O, Hart P E 1972 Commun ACM 15 11

    [16]

    Fernandes L A F, Oliveira M M 2008 PRS 41 299

    [17]

    Yang K D, Ma Y L, Sun C, Miller J H, Potty G R 2004 IEEE J. Oceanic Engineer. 29 964

    [18]

    Juan Z, Chapman N, Bonnel J 2013 J. Acoust. Soc. Am. 134 394

    [19]

    Hamilton E L 1980 J. Acoust. Soc. Am. 68 1313

    [20]

    Zhou J X, Zhang X Z, Rogers P H, Jarzynski J 1987 J. Acoust. Soc. Am. 82 2068

    [21]

    Stall R D, Houtz R E 1983 J. Acoust. Soc. Am. 73 163

    [22]

    Zhang T W, Yang K D, Ma Y L, Li X G 2010 Acta Phys. Sin. 59 3294 (in Chinese) [张同伟, 杨坤德, 马远良, 黎雪刚 2010 59 3294]

  • [1]

    Duan R, Yang K D, Ma Y L, Lei B 2012 Chin Phys. B 21 124301

    [2]

    Gac J L, Asch M, Stephan Y, Demoulin X 2003 IEEE J. Oceanic Engineer. 28 479

    [3]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 63 044303]

    [4]

    Baraniuk R, Jones D 1995 IEEE Trans. Signal Proc. 43 2269

    [5]

    Bonnel J, Nicolas B, Mars J I, Walker S C 2010 J. Acoust. Soc. Am. 128 719

    [6]

    Bonnel J, Chapman N 2011 J. Acoust. Soc. Am. 130 EL101

    [7]

    Lu L C, Ma L 2015 Acta Phys. Sin. 64 024305 (in Chinese) [鹿力成, 马力 2015 64 024305]

    [8]

    Li Z L, Zhang R H 2007 Chin. Phys. Lett. 24 471

    [9]

    Li Z L, Yan J, Li F H, Guo L H 2002 Acta Acoust. 27 487 (in Chinese) [李整林, 鄢锦, 李风华, 郭良浩 2002 声学学报 27 487]

    [10]

    Zhang X L, Li Z L, Huang X D 2009 Acta Acoust. 34 54 (in Chinese) [张学磊, 李整林, 黄晓砥 2009 声学学报 34 54]

    [11]

    Gerstoft P 1994 J. Acoust. Soc. Am. 95 770

    [12]

    Gerstoft P, Mechlenbrauker C F 1998 J. Acoust. Soc. Am. 104 808

    [13]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2000 Computational Ocean Acoustics ( Vol. 2) (New York: American Institute of Physics) p67

    [14]

    Tolstoy I, Clay C 1987 Theory and Experiment in Underwater Sound ( Vol. 2) (New York: Acoustical Society of American)

    [15]

    Duda R O, Hart P E 1972 Commun ACM 15 11

    [16]

    Fernandes L A F, Oliveira M M 2008 PRS 41 299

    [17]

    Yang K D, Ma Y L, Sun C, Miller J H, Potty G R 2004 IEEE J. Oceanic Engineer. 29 964

    [18]

    Juan Z, Chapman N, Bonnel J 2013 J. Acoust. Soc. Am. 134 394

    [19]

    Hamilton E L 1980 J. Acoust. Soc. Am. 68 1313

    [20]

    Zhou J X, Zhang X Z, Rogers P H, Jarzynski J 1987 J. Acoust. Soc. Am. 82 2068

    [21]

    Stall R D, Houtz R E 1983 J. Acoust. Soc. Am. 73 163

    [22]

    Zhang T W, Yang K D, Ma Y L, Li X G 2010 Acta Phys. Sin. 59 3294 (in Chinese) [张同伟, 杨坤德, 马远良, 黎雪刚 2010 59 3294]

  • [1] 康娟, 彭朝晖, 何利, 李晟昊, 于小涛. 基于多层水平变化浅海海底模型的低频反演方法.  , 2024, 73(5): 054301. doi: 10.7498/aps.73.20231715
    [2] 郝望, 段睿, 杨坤德. 联合简正波水波和底波频散特性的贝叶斯地声参数反演.  , 2023, 72(5): 054303. doi: 10.7498/aps.72.20221717
    [3] 高飞, 徐芳华, 李整林, 秦继兴. 大陆坡内波环境中声传播模态耦合及强度起伏特征.  , 2022, 71(20): 204301. doi: 10.7498/aps.71.20220634
    [4] 孙冠文, 崔寒茵, 李超, 林伟军. 火星大气频散声速剖面建模方法及其对声传播路径的影响.  , 2022, 71(24): 244304. doi: 10.7498/aps.71.20221531
    [5] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性.  , 2022, 0(0): . doi: 10.7498/aps.7120220566
    [6] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性.  , 2022, 71(21): 214302. doi: 10.7498/aps.71.20220566
    [7] 刘娟, 李琪. 一种水平变化波导中声传播问题的耦合模态法.  , 2021, 70(6): 064301. doi: 10.7498/aps.70.20201726
    [8] 程巍, 滕鹏晓, 吕君, 姬培锋, 戴翊靖. 基于大气声传播理论的爆炸声源能量估计.  , 2021, 70(24): 244203. doi: 10.7498/aps.70.20210562
    [9] 朴胜春, 栗子洋, 王笑寒, 张明辉. 深海不完整声道下反转点会聚区研究.  , 2021, 70(2): 024301. doi: 10.7498/aps.70.20201375
    [10] 李风华, 王翰卓. 利用随机多项式展开的海底声学参数反演方法.  , 2021, 70(17): 174305. doi: 10.7498/aps.70.20210119
    [11] 咸明皓, 刘西川, 印敏, 宋堃, 高太长. 基于星地链路的垂直降雨场反演方法.  , 2020, 69(2): 024301. doi: 10.7498/aps.69.20191232
    [12] 李梦竹, 李整林, 周纪浔, 张仁和. 一种低声速沉积层海底参数声学反演方法.  , 2019, 68(9): 094301. doi: 10.7498/aps.68.20190183
    [13] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性.  , 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [14] 李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波. 一种基于模态匹配的浅海波导中宽带脉冲声源的被动测距方法.  , 2017, 66(9): 094302. doi: 10.7498/aps.66.094302
    [15] 江鹏飞, 林建恒, 孙军平, 衣雪娟. 考虑噪声源深度分布的海洋环境噪声模型及地声参数反演.  , 2017, 66(1): 014306. doi: 10.7498/aps.66.014306
    [16] 郭晓乐, 杨坤德, 马远良, 杨秋龙. 一种基于简正波模态消频散变换的声源距离深度估计方法.  , 2016, 65(21): 214302. doi: 10.7498/aps.65.214302
    [17] 谢磊, 孙超, 刘雄厚, 蒋光禹. 陆架斜坡海域声场特性对常规波束形成阵增益的影响.  , 2016, 65(14): 144303. doi: 10.7498/aps.65.144303
    [18] 屈科, 胡长青, 赵梅. 利用时域波形快速反演海底单参数的方法.  , 2013, 62(22): 224303. doi: 10.7498/aps.62.224303
    [19] 杨坤德, 马远良. 利用海底反射信号进行地声参数反演的方法.  , 2009, 58(3): 1798-1805. doi: 10.7498/aps.58.1798
    [20] 肖 夏, 尤学一, 姚素英. 表征超大规模集成电路互连纳米薄膜硬度特性的声表面波的频散特性.  , 2007, 56(4): 2428-2433. doi: 10.7498/aps.56.2428
计量
  • 文章访问数:  6714
  • PDF下载量:  288
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-09
  • 修回日期:  2015-04-13
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map