-
利用差分吸收激光雷达探测大气CO2, 可以获得其浓度的垂直分布, 对于研究碳源、碳汇的过程有重要意义. 设计了一套种子注入的脉冲差频激光器系统, 作为差分吸收激光雷达的激光光源. 针对脉冲差分吸收CO2激光雷达on波长的高精度稳频的研究空白, 本文提出一种基于匹配的on波长的连续稳频算法. 其基本思想是采用分子饱和吸收法, 测量通过双路吸收池后的差分信号, 计算其光学厚度值(optical depth, OD), 获得实测的伪吸收谱, 当监测到on波长发漂移后, 进行连续的波长调节, 获取其OD值, 最后基于一维的图像匹配算法, 将OD值作为灰度值, 利用图像匹配原理, 进行OD值匹配, 确定当前输出波长在伪吸收谱中的位置, 进而调节至on波长, 实现on波长的连续、稳定输出. 实验结果表明, 提出的稳频算法能够很好的满足高精度的稳频要求, 同时差平方和法在该应用中是最优的, 稳频精度可达到0.3 pm.The differential absorption lidar (DIAL) can help us to obtain the vertical distribution of the atmospheric CO2 concentration, which is important to the study of carbon sources and carbon sinks. We design a seeder injected pulsed laser system, working as the laser source of the CO2 DIAL. Unlike the other CO2 DIALs, our laser source is the result of difference frequency of two lasers at the wavelengths of 1064 nm and 634 nm, respectively. It should be pointed out that the high frequency (wavelength) accuracy and stability of the emission laser, especially the on-line one, are greatly required in the CO2 DIAL system. However, the mechanical properties of the dye laser (634 nm) and the application of laser difference frequency technique make the wavelength drift constantly; besides, the extremely unstable energy of the pulsed laser increases the difficulty in identifying and stabilizing the on-line wavelength. Hence, a fast and efficient frequency (wavelength) stabilization method is needed to achieve a stable emission wavelength. Aiming at the research gap of the high precision requirements of on-line laser for this kind of pulsed DIAL, we propose a frequency stabilization method based on matching algorithm. The basic idea is to utilize the saturable absorption of CO2 molecule, by measuring the differential residual-intensity after the laser passing through dual absorption cells to calculate the optical depth (OD) and obtain the so-called pseudo CO2 absorption spectrum, which can be used to identify the on-line laser accurately. Finally, based on the matching algorithm of one-dimensional image, treating the OD as the gray value in the image, we implement the OD matching as a most important part in the process of frequency stabilization, and determine the exact position of the real-time output laser in the measured pseudo absorption spectrum. Thus, when some errors happen to the monitored ODs, by continuously adjusting the wavelength of the laser, the proposed method can fulfill the wavelength adjustment and accomplish the continuous frequency stabilization for on-line laser. Experimental results show that the frequency stabilization algorithm based on OD matching can satisfy the requirements for pulsed on-line laser frequency stabilization, and the sum of squares of deviation method is the optimal one in this application, with a stabilization accuracy of 0.3 pm. Besides, the proposed method can also be introduced in other laser frequency stabilization.
-
Keywords:
- differential absorption /
- CO2 /
- frequency stabilization of on-line laser /
- matching
[1] Bauer J E, Cai W J, Raymond P A, Bianchi T S, Hopkinson C S, Regnier P A 2013 Nature 504 61
[2] Regnier P, Friedlingstein P, Ciais P, Mackenzie F T, Gruber N, Janssens I A, Laruelle G G, Lauerwald R, Luyssaert S, Andersson A J 2013 Nature Geoscience 6 597
[3] Fung I Y, Doney S C, Lindsay K, John J 2005 Proc. Natl. Acad. Sci. USA 102 11201
[4] Pliutau D, Prasad N S 2012 Laser Applications to Chemical, Security and Environmental Analysis San Diego, California, United States, January 29-February 1, 2012 LT6B.10
[5] Abshire J B, Riris H, Allan G R, Weaver C J, Mao J P, Sun X L, Hasselbrack W E, Yu A, Amediek A, Choi Y, Browell E V 2010 Proc. SPIE7832, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VI, Toulouse, France, September 20, 2010 78320D-13
[6] Numata K, Chen J R, Wu S T, Abshire J B, Krainak M A 2011 Appl. Opt. 50 1047
[7] Sakaizawa D, Nagasawa C, Nagai T, Abo M, Shibata Y, Nakazato M, Sakai T 2009 Appl. Opt. 48 748
[8] Allan G R, Riris H, Abshire J B, X. Sun, Wilson E, Burris J F, Krainak M A 2008 IEEE Aerospace Conference, Big Sky, Montana, United States, March 1-8, 2008 p1
[9] Abshire J B, Riris H, Allan G R, Weaver C J, Mao J, Sun X, Hasselbrack W E, Kawa S R, Biraud S 2010 Tellus B 62 770
[10] Yu H, Hu S, Wu X Q, Cao K F, Meng X Q, Yuan K E, Huang J, Shao S S, Xu Z H 2012 Acta Optica Sinica 32 (8) 13 (in Chinese) [于海利, 胡顺星, 吴晓庆, 曹开法, 孟祥谦, 苑克娥, 黄见, 邵石生, 徐之海 2012光学学报 32 (8) 13]
[11] Wu J, Wang X H, Fang Y H, Xiong W, Shi H L, Qiao Y L 2011 Acta Opt. Sin. 31 0101 (in Chinese) [吴军, 王先华, 方勇华, 熊伟, 施海亮, 乔延利 2011 光学学报 31 0101]
[12] Zhao P T, Zhang Y C, Wang L, Hu S X, Su J, Cao K F, Zhao Y F, Hu H L 2008 Chin. Phys. B 17 010335
[13] Liu H, Shu R, Hong G L, Zheng L, Ge Y, Hu Y H 2014 Acta Phys. Sin. 63 104214 (in Chinese) [刘豪, 舒嵘, 洪光烈, 郑龙, 葛烨, 胡以华 2014 63 104214]
[14] Cheng B, Wang Z Y, Wu B, Xu A P, Wang Q Y, Xu Y F, Lin Q 2014 Chin. Phys. B 23 104222
[15] Raybaut M, Schmid T, Godard A, Mohamed A K, Lefebvre M, Marnas F, Flamant P, Bohman A, Geiser P, Kaspersen P 2009 Opt. Lett. 34 2069
[16] Ishii S, Mizutani K, Fukuoka H, Ishikawa T, Baron, P Iwai H, Aoki T, Itabe T, Sato A, Asai K 2010 Proc. SPIE 7860, Lidar Remote Sensing for Environmental Monitoring XI Incheon, Republic of Korea, October 28, 2010 786004
[17] Ge Y, Hu Y H, Shu R, Hong G L 2015 Acta Phys. Sin. 64 020702 (in Chinese) [葛烨, 胡以华, 舒嵘, 洪光烈 2015 64 020702]
[18] Yan J X, Gong S S, Liu Z S 2011 Environmental monitoring lidar (Beijing: Science Press) (Ed. 2nd) pp184-185 (in Chinese) [阎吉祥, 龚顺生, 刘智深 2011 环境监测激光雷达 (北京: 科学出版社) (第2版) 第184-185页]
[19] Gong W, Ma X, Dong Y N, Lin H, Li J 2014 Opt. Laser Technol. 56 52
[20] Rothman L, Gordon I, Babikov Y, Barbe A, Chris Benner D, Bernath P, Birk M, Bizzocchi L, Boudon V, Brown L 2013 J. Quant. Spectrosc. Ra. 130 4
[21] Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P 2009 J. Quant. Spectrosc. Ra. 110 533
[22] Zhu X F, Lin Z X, Liu L M, Shao J Y, Gong W 2014 Acta Phys. Sin. 63 174203 (in Chinese) [朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威 2014 63 174203]
[23] Xiang C Z, Gong W, Ma X, Cheng X W 2014 Acta Optia Sinica 9 161 (in Chinese) [相成志, 龚威, 马昕, 程学武 2014 光学学报 9 161]
[24] Zhang J Q, Pan L, Wang S G 2009 Photogrammetry (Hubei: Wuhan University Press) pp152-157 (in Chinese) [张剑清, 潘励, 王树根 2009 摄影测量学 (湖北: 武汉大学出版社) 第152-157页]
-
[1] Bauer J E, Cai W J, Raymond P A, Bianchi T S, Hopkinson C S, Regnier P A 2013 Nature 504 61
[2] Regnier P, Friedlingstein P, Ciais P, Mackenzie F T, Gruber N, Janssens I A, Laruelle G G, Lauerwald R, Luyssaert S, Andersson A J 2013 Nature Geoscience 6 597
[3] Fung I Y, Doney S C, Lindsay K, John J 2005 Proc. Natl. Acad. Sci. USA 102 11201
[4] Pliutau D, Prasad N S 2012 Laser Applications to Chemical, Security and Environmental Analysis San Diego, California, United States, January 29-February 1, 2012 LT6B.10
[5] Abshire J B, Riris H, Allan G R, Weaver C J, Mao J P, Sun X L, Hasselbrack W E, Yu A, Amediek A, Choi Y, Browell E V 2010 Proc. SPIE7832, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VI, Toulouse, France, September 20, 2010 78320D-13
[6] Numata K, Chen J R, Wu S T, Abshire J B, Krainak M A 2011 Appl. Opt. 50 1047
[7] Sakaizawa D, Nagasawa C, Nagai T, Abo M, Shibata Y, Nakazato M, Sakai T 2009 Appl. Opt. 48 748
[8] Allan G R, Riris H, Abshire J B, X. Sun, Wilson E, Burris J F, Krainak M A 2008 IEEE Aerospace Conference, Big Sky, Montana, United States, March 1-8, 2008 p1
[9] Abshire J B, Riris H, Allan G R, Weaver C J, Mao J, Sun X, Hasselbrack W E, Kawa S R, Biraud S 2010 Tellus B 62 770
[10] Yu H, Hu S, Wu X Q, Cao K F, Meng X Q, Yuan K E, Huang J, Shao S S, Xu Z H 2012 Acta Optica Sinica 32 (8) 13 (in Chinese) [于海利, 胡顺星, 吴晓庆, 曹开法, 孟祥谦, 苑克娥, 黄见, 邵石生, 徐之海 2012光学学报 32 (8) 13]
[11] Wu J, Wang X H, Fang Y H, Xiong W, Shi H L, Qiao Y L 2011 Acta Opt. Sin. 31 0101 (in Chinese) [吴军, 王先华, 方勇华, 熊伟, 施海亮, 乔延利 2011 光学学报 31 0101]
[12] Zhao P T, Zhang Y C, Wang L, Hu S X, Su J, Cao K F, Zhao Y F, Hu H L 2008 Chin. Phys. B 17 010335
[13] Liu H, Shu R, Hong G L, Zheng L, Ge Y, Hu Y H 2014 Acta Phys. Sin. 63 104214 (in Chinese) [刘豪, 舒嵘, 洪光烈, 郑龙, 葛烨, 胡以华 2014 63 104214]
[14] Cheng B, Wang Z Y, Wu B, Xu A P, Wang Q Y, Xu Y F, Lin Q 2014 Chin. Phys. B 23 104222
[15] Raybaut M, Schmid T, Godard A, Mohamed A K, Lefebvre M, Marnas F, Flamant P, Bohman A, Geiser P, Kaspersen P 2009 Opt. Lett. 34 2069
[16] Ishii S, Mizutani K, Fukuoka H, Ishikawa T, Baron, P Iwai H, Aoki T, Itabe T, Sato A, Asai K 2010 Proc. SPIE 7860, Lidar Remote Sensing for Environmental Monitoring XI Incheon, Republic of Korea, October 28, 2010 786004
[17] Ge Y, Hu Y H, Shu R, Hong G L 2015 Acta Phys. Sin. 64 020702 (in Chinese) [葛烨, 胡以华, 舒嵘, 洪光烈 2015 64 020702]
[18] Yan J X, Gong S S, Liu Z S 2011 Environmental monitoring lidar (Beijing: Science Press) (Ed. 2nd) pp184-185 (in Chinese) [阎吉祥, 龚顺生, 刘智深 2011 环境监测激光雷达 (北京: 科学出版社) (第2版) 第184-185页]
[19] Gong W, Ma X, Dong Y N, Lin H, Li J 2014 Opt. Laser Technol. 56 52
[20] Rothman L, Gordon I, Babikov Y, Barbe A, Chris Benner D, Bernath P, Birk M, Bizzocchi L, Boudon V, Brown L 2013 J. Quant. Spectrosc. Ra. 130 4
[21] Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P 2009 J. Quant. Spectrosc. Ra. 110 533
[22] Zhu X F, Lin Z X, Liu L M, Shao J Y, Gong W 2014 Acta Phys. Sin. 63 174203 (in Chinese) [朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威 2014 63 174203]
[23] Xiang C Z, Gong W, Ma X, Cheng X W 2014 Acta Optia Sinica 9 161 (in Chinese) [相成志, 龚威, 马昕, 程学武 2014 光学学报 9 161]
[24] Zhang J Q, Pan L, Wang S G 2009 Photogrammetry (Hubei: Wuhan University Press) pp152-157 (in Chinese) [张剑清, 潘励, 王树根 2009 摄影测量学 (湖北: 武汉大学出版社) 第152-157页]
计量
- 文章访问数: 6084
- PDF下载量: 215
- 被引次数: 0