搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同取向角下CO2分子波长依赖的垂直谐波效率

李雁鹏 于术娟 陈彦军

引用本文:
Citation:

不同取向角下CO2分子波长依赖的垂直谐波效率

李雁鹏, 于术娟, 陈彦军

Wavelength-dependent perpendicular-harmonics efficiency from oriented CO2 molecule

Li Yan-Peng, Yu Shu-Juan, Chen Yan-Jun
PDF
导出引用
  • 通过数值计算, 研究了强激光场中CO2 分子在不同波长和取向角下产生的高次谐波辐射的效率. 发现CO2 分子的垂直谐波效率在较小的和中间的取向角时倾向于与平行谐波效率可比或更高, 而在较大的取向角时, 垂直谐波效率远低于平行谐波效率. 进一步的分析表明, CO2 分子的结构对其垂直谐波效率有重要的影响, 且该影响与波长有关. 建议对于较复杂的分子, 应该在分子的轨道成像实验中考虑垂直谐波的贡献.
    In this paper, we numerically study the efficiencies of high-order harmonic generation (HHG) from CO2 molecule exposed to strong laser fields with different laser wavelengths and different orientation angles. Through calculating the HHG spectra in the directions parallel and perpendicular to the laser polarization, we show that the efficiency of perpendicular harmonics can be higher than or comparable to the parallel ones at the relatively small and intermediate orientation angles in some wavelength cases. At larger angles, the efficiency of perpendicular harmonics is generally lower than the parallel one. Further analyses show that the structure of the CO2 molecule plays an important role in the HHG efficiency and this role is also related to the laser wavelength. Specifically, we show that the relative yields of perpendicular harmonic versus parallel harmonic are closely associated with the parallel and perpendicular dipoles of the molecule. Due to the effect of two-center interference, the parallel or perpendicular dipoles of the molecule show some deep hollows in some energy regions, which depend on the molecular orientation, and so do the corresponding parallel and perpendicular harmonics. As the parallel harmonics are suppressed due to the interference effect strongly in some energy regions, the yields of the perpendicular harmonics, which are not subjected to the interference effect in the corresponding energy regions, can be higher than the parallel one. As a result, the integrated harmonic yield (i.e., the harmonic efficiency) in the perpendicular case can be higher than the parallel one, especially for the cases with short laser wavelengths and small orientation angles. In these cases, the interference effect induces the suppression of parallel harmonics in the whole HHG plateau. We therefore expect that the interference effect plays an important role in the HHG efficiency in these cases. For the case of long laser wavelength, the HHG plateau extends to high energy region and the main contributions to the integrated HHG yield can come from harmonics out of the interference-effect-dominating region. As a result, the interference effect plays a smaller role in determining the HHG efficiencies of parallel and perpendicular harmonics, in comparison with the case of short laser wavelength. For large orientation angles, the value of the perpendicular dipole is smaller than the parallel one in a wide energy region, and accordingly, the perpendicular harmonics are weaker than the parallel ones on the whole. As a rule, the parallel efficiency is usually higher than the perpendicular one. As the perpendicular harmonic can contribute importantly to the harmonic emission in some cases, our results suggest that for the complicated molecule, the perpendicular harmonics should be considered in the molecular orbital tomography experiments.
      Corresponding author: Yu Shu-Juan, yushujuan1129@163.com;chenyanjun@snnu.edu.cn ; Chen Yan-Jun, yushujuan1129@163.com;chenyanjun@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274090) and the Fundamental Research Funds for the Central Universities, China (Grant No. GK201403002).
    [1]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [2]

    Antoine P, L’Huillier A, Lewenstein M 1996 Phys. Rev. Lett. 77 1234

    [3]

    Zou P, Li R X, Zeng Z N, Xiong H, Liu P, Leng Y X, Fan P Z, Xu Z Z 2010 Chin. Phys. B 19 019501

    [4]

    Zheng J, Sheng Z M, Zhang J 2005 Acta Phys. Sin. 54 2638(in Chinese) [郑君, 盛政明, 张杰 2005 54 2638]

    [5]

    Paul P M, Toma E S, Breger P 2001 Science 292 1689

    [6]

    Hentschel M, Kienberger R 2001 Nature 414 509

    [7]

    Chen J G, Yang Y J, Zeng S L, Liang H Q 2011 Phys. Rev. A 83 023401

    [8]

    Zeng T T, Li P C, Zhou X X 2014 Acta Phys. Sin. 63 203201(in Chinese) [曾婷婷, 李鹏程, 周效信 2014 63 203201]

    [9]

    Christov I P, Zhou J, Peatross J, Rundquist A, Murnane M M, Kapteyn H C 1996 Phys. Rev. Lett. 77 1743

    [10]

    Ditmire T, Kulander K, Crane J, Nguyen H, Perry M 1996 J. Opt. Soc. Am. B 13 406

    [11]

    Tate J, Auguste T, Muller H G, Salières P, Agostini P, DiMauro L F 2007 Phys. Rev. Lett. 98 013901

    [12]

    Schiessl K, Ishikawa K L, Persson E, Burgdörer J 2007 Phys. Rev. Lett. 99 253903

    [13]

    Frolov M V, Manakov N L, Starace A F 2008 Phys. Rev. Lett. 100 173001

    [14]

    Yakovlev V, Ivanov M, Krausz F 2007 Opt. Express 15 15351

    [15]

    Lan P F, Eiji J T, Katsumi M 2010 Phys. Rev. A 81 061802

    [16]

    Liu C D, Zeng Z N, Wei P F, Liu P, Li R X, Xu Z Z 2010 Phys. Rev. A 81 033426

    [17]

    Falcao-Filho E L, Gkortsas V M, Gordon A, Katner F X 2009 Opt. Express 17 11217

    [18]

    Pérez-Hernández J A, Roso L, Plaja L 2009 Opt. Express 17 9891

    [19]

    Jin C, Le A T, Lin C D 2011 Phys. Rev. A 83 023411

    [20]

    Austin D R, Biegert J 2012 Phys. Rev. A 86 023813

    [21]

    Auguste T, Catoire F, Agostini P, DiMauro L F, Chirila C C, Yakovlev V S, Salières P 2012 New J. Phys. 14 103014

    [22]

    Le A T, Wei H, Jin C, Tuoc V N, Morishita T, Lin C D 2014 Phys. Rev. Lett. 113 033001

    [23]

    Cui X, Li S Y, Guo F M, Tian Y Y, Chen J G, Zeng S L, Yang Y J 2015 Acta Phys. Sin. 64 043201(in Chinese) [崔鑫, 李苏宇, 郭福明, 田原野, 陈基根, 曾思良, 杨玉军 2015 64 043201]

    [24]

    Shan B, Chang Z 2001 Phys. Rev. A 65 011804

    [25]

    Yu S J, Zhang B, Li Y P, Yang S P, Chen Y J 2014 Phys. Rev. A 90 053844

    [26]

    Zeng Z, Cheng Y, Song X, Li R, Xu Z 2007 Phys. Rev. Lett. 98 203901

    [27]

    Zhao D, Li F L 2013 Chin. Phys. B 22 064215

    [28]

    Feng L Q, Liu H 2015 Chin. Phys. B 24 034206

    [29]

    Diao H H, Zheng Y H, Zhong Y, Zeng Z N, Ge X C, Li C, Li R X, Xu Z Z 2014 Chin. Phys. B 23 104210

    [30]

    Ge X L, Du H, Wang Q, Guo J, Liu X S 2015 Chin. Phys. B 24 023201

    [31]

    Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Légaré F, Giguère M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902

    [32]

    Chen Y J, Zhang B 2011 Phys. Rev. A 84 053402

    [33]

    Zhang B, Chen Y J, Jiang X Q, Sun X D 2013 Phys. Rev. A 88 053428

    [34]

    Itatani J, Zeidler D, Levesque J, Spanner M, Villeneuve D M, Corkum P B 2005 Phys. Rev. Lett. 94 123902

    [35]

    Levesque J, Zeidler D, Marangos J P, Corkum P B, Villeneuve D M 2007 Phys. Rev. Lett. 98 183903

    [36]

    Patchkovskii S, Zhao Z, Brabec T, Villeneuve D M 2006 Phys. Rev. Lett. 97 123003

    [37]

    Torres R, Kajumba N, Underwood J G, Robinson J S, Baker S, Tisch J W G, de Nalda R, Bryan W A, Velotta R, Altucci C, Turcu I C E, Marangos J P 2007 Phys. Rev. Lett. 98 203007

    [38]

    Le V H, Le A T, Xie R H, Lin C D 2007 Phys. Rev. A 76 013414

    [39]

    Chen Y J, Hu B 2009 J. Chem. Phys. 131 244109

    [40]

    Itatani J, Levesque J, Zeidler D, Hiromichi N, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867

    [41]

    Chen Y J, Liu J 2008 Phys. Rev. A 77 013410

    [42]

    Chen Y J, Chen J, Liu J 2006 Phys. Rev. A 74 063405

  • [1]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [2]

    Antoine P, L’Huillier A, Lewenstein M 1996 Phys. Rev. Lett. 77 1234

    [3]

    Zou P, Li R X, Zeng Z N, Xiong H, Liu P, Leng Y X, Fan P Z, Xu Z Z 2010 Chin. Phys. B 19 019501

    [4]

    Zheng J, Sheng Z M, Zhang J 2005 Acta Phys. Sin. 54 2638(in Chinese) [郑君, 盛政明, 张杰 2005 54 2638]

    [5]

    Paul P M, Toma E S, Breger P 2001 Science 292 1689

    [6]

    Hentschel M, Kienberger R 2001 Nature 414 509

    [7]

    Chen J G, Yang Y J, Zeng S L, Liang H Q 2011 Phys. Rev. A 83 023401

    [8]

    Zeng T T, Li P C, Zhou X X 2014 Acta Phys. Sin. 63 203201(in Chinese) [曾婷婷, 李鹏程, 周效信 2014 63 203201]

    [9]

    Christov I P, Zhou J, Peatross J, Rundquist A, Murnane M M, Kapteyn H C 1996 Phys. Rev. Lett. 77 1743

    [10]

    Ditmire T, Kulander K, Crane J, Nguyen H, Perry M 1996 J. Opt. Soc. Am. B 13 406

    [11]

    Tate J, Auguste T, Muller H G, Salières P, Agostini P, DiMauro L F 2007 Phys. Rev. Lett. 98 013901

    [12]

    Schiessl K, Ishikawa K L, Persson E, Burgdörer J 2007 Phys. Rev. Lett. 99 253903

    [13]

    Frolov M V, Manakov N L, Starace A F 2008 Phys. Rev. Lett. 100 173001

    [14]

    Yakovlev V, Ivanov M, Krausz F 2007 Opt. Express 15 15351

    [15]

    Lan P F, Eiji J T, Katsumi M 2010 Phys. Rev. A 81 061802

    [16]

    Liu C D, Zeng Z N, Wei P F, Liu P, Li R X, Xu Z Z 2010 Phys. Rev. A 81 033426

    [17]

    Falcao-Filho E L, Gkortsas V M, Gordon A, Katner F X 2009 Opt. Express 17 11217

    [18]

    Pérez-Hernández J A, Roso L, Plaja L 2009 Opt. Express 17 9891

    [19]

    Jin C, Le A T, Lin C D 2011 Phys. Rev. A 83 023411

    [20]

    Austin D R, Biegert J 2012 Phys. Rev. A 86 023813

    [21]

    Auguste T, Catoire F, Agostini P, DiMauro L F, Chirila C C, Yakovlev V S, Salières P 2012 New J. Phys. 14 103014

    [22]

    Le A T, Wei H, Jin C, Tuoc V N, Morishita T, Lin C D 2014 Phys. Rev. Lett. 113 033001

    [23]

    Cui X, Li S Y, Guo F M, Tian Y Y, Chen J G, Zeng S L, Yang Y J 2015 Acta Phys. Sin. 64 043201(in Chinese) [崔鑫, 李苏宇, 郭福明, 田原野, 陈基根, 曾思良, 杨玉军 2015 64 043201]

    [24]

    Shan B, Chang Z 2001 Phys. Rev. A 65 011804

    [25]

    Yu S J, Zhang B, Li Y P, Yang S P, Chen Y J 2014 Phys. Rev. A 90 053844

    [26]

    Zeng Z, Cheng Y, Song X, Li R, Xu Z 2007 Phys. Rev. Lett. 98 203901

    [27]

    Zhao D, Li F L 2013 Chin. Phys. B 22 064215

    [28]

    Feng L Q, Liu H 2015 Chin. Phys. B 24 034206

    [29]

    Diao H H, Zheng Y H, Zhong Y, Zeng Z N, Ge X C, Li C, Li R X, Xu Z Z 2014 Chin. Phys. B 23 104210

    [30]

    Ge X L, Du H, Wang Q, Guo J, Liu X S 2015 Chin. Phys. B 24 023201

    [31]

    Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Légaré F, Giguère M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902

    [32]

    Chen Y J, Zhang B 2011 Phys. Rev. A 84 053402

    [33]

    Zhang B, Chen Y J, Jiang X Q, Sun X D 2013 Phys. Rev. A 88 053428

    [34]

    Itatani J, Zeidler D, Levesque J, Spanner M, Villeneuve D M, Corkum P B 2005 Phys. Rev. Lett. 94 123902

    [35]

    Levesque J, Zeidler D, Marangos J P, Corkum P B, Villeneuve D M 2007 Phys. Rev. Lett. 98 183903

    [36]

    Patchkovskii S, Zhao Z, Brabec T, Villeneuve D M 2006 Phys. Rev. Lett. 97 123003

    [37]

    Torres R, Kajumba N, Underwood J G, Robinson J S, Baker S, Tisch J W G, de Nalda R, Bryan W A, Velotta R, Altucci C, Turcu I C E, Marangos J P 2007 Phys. Rev. Lett. 98 203007

    [38]

    Le V H, Le A T, Xie R H, Lin C D 2007 Phys. Rev. A 76 013414

    [39]

    Chen Y J, Hu B 2009 J. Chem. Phys. 131 244109

    [40]

    Itatani J, Levesque J, Zeidler D, Hiromichi N, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867

    [41]

    Chen Y J, Liu J 2008 Phys. Rev. A 77 013410

    [42]

    Chen Y J, Chen J, Liu J 2006 Phys. Rev. A 74 063405

  • [1] 张春艳. H离子团簇高次谐波平台展宽与团簇膨胀.  , 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [2] 于术娟, 刘竹琴, 李雁鹏. 对称分子${\text{H}}_{\text{2}}^{\text{ + }}$在强短波激光场中高次谐波椭偏率性质的研究.  , 2023, 72(4): 043101. doi: 10.7498/aps.72.20221946
    [3] 魏博宁, 焦志宏, 周效信. 非对称波形激光驱动的氢原子高次谐波频移及控制.  , 2022, 71(7): 073201. doi: 10.7498/aps.71.20212146
    [4] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展.  , 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [5] 姚惠东, 崔波, 马思琦, 余超, 陆瑞锋. 原子错位堆栈增强双层MoS2高次谐波产率.  , 2021, 70(13): 134207. doi: 10.7498/aps.70.20210731
    [6] 范鑫, 梁红静, 单立宇, 闫博, 高庆华, 马日, 丁大军. 基于高次谐波产生的极紫外偏振涡旋光.  , 2020, 69(4): 044203. doi: 10.7498/aps.69.20190834
    [7] 蔡怀鹏, 高健, 李博原, 刘峰, 陈黎明, 远晓辉, 陈民, 盛政明, 张杰. 相对论圆偏振激光与固体靶作用产生高次谐波.  , 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [8] 李夏至, 邹德滨, 周泓宇, 张世杰, 赵娜, 余德尧, 卓红斌. 等离子体光栅靶的表面粗糙度对高次谐波产生的影响.  , 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [9] 罗香怡, 刘海凤, 贲帅, 刘学深. 非均匀激光场中氢分子离子高次谐波的增强.  , 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [10] 管仲, 李伟, 王国利, 周效信. 激光驱动晶体发射高次谐波的特性研究.  , 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [11] 余朝, 孙真荣, 郭东升. 高次谐波的Guo-Åberg-Crasemann理论及其截断定律.  , 2015, 64(12): 124207. doi: 10.7498/aps.64.124207
    [12] 陈高, 杨玉军, 郭福明. 晶体环境下高次谐波谱的截止频率分析.  , 2013, 62(8): 083202. doi: 10.7498/aps.62.083202
    [13] 曹卫军, 成春芝, 周效信. 原子在双色组合场中产生高次谐波的转换效率与激光波长的关系.  , 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [14] 崔磊, 王小娟, 王帆, 曾祥华. 脉冲激光偏振方向对氧分子高次谐波的影响——基于含时密度泛函理论的模拟.  , 2010, 59(1): 317-321. doi: 10.7498/aps.59.317
    [15] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响.  , 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [16] 张春丽, 祁月盈, 刘学深, 丁培柱. 双色激光场中高次谐波转化效率的提高.  , 2007, 56(2): 774-780. doi: 10.7498/aps.56.774
    [17] 崔 磊, 顾 斌, 滕玉永, 胡永金, 赵 江, 曾祥华. 脉冲激光偏振方向对氮分子高次谐波的影响--基于含时密度泛函理论的模拟.  , 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [18] 张秋菊, 盛政明, 张 杰. 超短脉冲强激光与固体靶作用产生的高次谐波红移.  , 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [19] 王大威, 刘婷婷, 杨宏, 蒋红兵, 龚旗煌. 介质的非均匀性对高次谐波影响的研究.  , 2002, 51(9): 2034-2037. doi: 10.7498/aps.51.2034
    [20] 喻 胜, 李宏福, 谢仲怜, 罗 勇. 渐变复合腔回旋管高次谐波注-波互作用非线性模拟.  , 2000, 49(12): 2455-2459. doi: 10.7498/aps.49.2455
计量
  • 文章访问数:  5822
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-26
  • 修回日期:  2015-05-20
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map