-
对流层NO2垂直柱浓度在水平分布上具有较大不均匀性, 研究对流层NO2分布特征对于研究污染的形成具有重要作用. 本文在国内首次采用车载多轴差分吸收光谱技术探测对流层NO2的水平分布, 着重研究了基于车载移动平台上的多轴差分吸收光谱技术反演对流层NO2垂直柱浓度的方法. 采用低阶多项式拟合扣除夫琅禾费参考谱和平流层对对流层NO2的贡献, 反演得到移动平台上对流层NO2垂直柱浓度. 结合大气辐射传输模型, 通过设置不同气溶胶光学厚度及层高、NO2层高、方位角等对反演误差进行分析, 得出对流层NO2垂直柱浓度的总误差小于25%. 在合肥开展观测实验, 获取观测时间段内合肥市对流层NO2垂直柱浓度的水平分布特征. 并将观测结果与OMI卫星过顶数据比对, 在洁净和车载观测点较多的像元内, 两者结果符合较好; 在污染区域, 两者结果有一定差别. 研究显示, 采用车载多轴差分吸收光谱技术能较好的探测区域对流层NO2的分布特征, 这对模型验证、卫星校验及研究输送过程具有重要意义.
-
关键词:
- 车载多轴差分吸收光谱 /
- 对流层NO2 /
- Ozone Monitroing Instrument /
- 水平分布
The distribution of tropospheric NO2 vertical column desity shows a characteristic of inhomogeneity. Such information is important for the study of pollution formation. A horizontal distribution of tropospheric NO2 vertical column desity based on mobile MAX-DOAS is studied in this paper, especially for a retrieval method of tropospheric NO2 with mobile MAX-DOAS. Using a low-order polynomial fitting can remove the conbtibuiton of the Frauenhofer and stratosphere, and then the tropospheric NO2 vertical column desity can be detected on the mobile platform. The total tropospheric NO2 error is lower than 25% with the model simulation by setting the different aerosol optical densities, aerosol layer heights, NO2 layer heights and azimuths. The mobile MAX-DOAS system is designed by ourself and the pattern of scanning sequentially is selected for this system. On the other hand, using electronic compass sensors, inclinometer, and software control method, the system can determine the elevation, the azimuth angle drift due to unstability of mobile platform during measurement, as well as the elevation and azimuth angle acquisition exactly, and automatically refer to the north and reduce measurement errors. In addition, the observation of tropospheric NO2 is carried out in Hefei city based on the mobile MAX-DOAS. The horizontal distribution of tropospheric NO2 across Hefei ring expressway and the 2nd ring in Hefei city is obtained during the measurement period. Furthermore, the tropospheric NO2 vertical column density from the mobile DOAS is compared with those from ozone monitoring instrument (OMI). Three pixels are covered by OMI in Hefei city during the measurement period of mobile MAX-DOAS, reprsenting “clean area”, “more mobile MAX-DOAS data area” and “polluted area” respectivley. A good agreement is found for “clean area” and the pixel including more data of mobile MAX-DOAS with 3.34×1015 molec/cm2 from mobile MAX-DOAS and 3.00×1015 molec/cm2 from OMI for “clean area” as well as 5.10×1015 molec/cm2 from mobile MAX-DOAS and 5.60×1015 molec/cm2 from OMI for “more mobile MAX-DOAS data area”. While there is a small difference between the two results for polluted area with 9.16×1015 molec/cm2 from mobile MAX-DOAS and 4.50×1015 molec/cm2 from OMI. The unsensitivity of OMI to sources near surface may be accounted for by this difference. These results indicate that the mobile MAX-DOAS can well detect the regional distribution of tropospheric trace gas rapidly. This is important for validation of the model and satellite and study of transport process.-
Keywords:
- mobile multi-axis differential optical absorption spectroscopy /
- tropospheric NO2 /
- ozone monitoring instrument /
- horizontal distribution
[1] Finlayson-Pitts B J, Pitts J N 1999 Chemistry of the Upper and Lower Atmosphere:Theory, Experiments, and Applications, San Diego, USA, Academic Press
[2] Kanaya Y, Irie H, Takashima H, Iwabuchi H, Akimoto H, Sudo K, Gu M, Chong J, Kim Y J, Lee H, Li A, Si F, Xu J, Xie P H, Liu W Q, Dzhola A, Postylyakov O, Ivanov V, Grechko E, Terpugova S, Panchenko M 2014 Atmos. Chem. Phys. Discuss. 14 2883
[3] Jang M, Kamens R M 2001 Environ. Sci. Technol. 35 3626
[4] World Health Organization:2006, Geneva, Switzerland
[5] Zhang Q, David G S, He K B, Wang Y, Richter A, Burrows J, Uno I, Jang Carey J, Chen D, Yao Z, Lei Y 2007 J. Geophys. Res. 112 D22306
[6] Mohr C, Richter R, De Carlo P F, Prevot A S H, Baltensperger U 2011 Atmos. Chem. Phys. 11 7465
[7] Pearl River Delta Regional Air Quality Monitoring Network A Report of Monitoring Results in 2006, 2006, Guangdong Provincial Environmental Protection Monitoring Centre and Environmental Protection Department, HKSAR (in Chinese) [粤港珠三角区域空气监控网络 2006 年监测结果报告, 广东省环境保护监测中心站和香港特别行政区环境保护署, 2006]
[8] Ren X B, Wang Y S 2009 Bulletin of Chinese Academy of Sciences 24 194 (in Chinese) [任小波, 王跃思 2009 中国科学院院刊 24 194]
[9] Han K M, Lee C K, Kim J, Song C H 2011 Atmos Environ 45 2962
[10] Li J, Wang Z, Wang X, Yamaji K, Takigawa M, Kanaya Y, Pochanart P, Liu Y, Irie H, Hu B, Tanimoto H, Akimoto H 2011 Atmos Environ 45 1817
[11] Wang M, Zhu T, Zhang J P, Zhang Q H, Lin W W, Li Y, Wang Z F 2011 Atmos. Chem. Phys. 11 11631
[12] Wang K, Jiang H, Zhang X, Zhou G 2011 International Journal of Remote Sensing 32 815
[13] Georgoulias A K, Kourtidis K A, Buchwitz M, Schneising O, Burrows J P 2011 International Journal of Remote Sensing 32 787
[14] Honninger G, von Friedeburg C, Platt U 2004 Atmos. Chem. Phys. 4 231
[15] Zhou H J, Liu W Q, Si F Q, Xie P H, Xu J, Dou K 2011 Acta Optica Sinica. 31 1101007 (in Chinese) [周海金, 刘文清, 司福褀, 谢品华, 徐晋, 窦科 2011 光学学报 31 1101007]
[16] Wang T, Wang P C, Yu H, Zhang X Y, Zhou B, Si F Q, Wang S S, Bai W G, Zhou H J, Zhao H 2013 Acta Phys. Sin. 62 054206 (in Chinese) [王婷, 王普才, 余环, 张兴赢, 周斌, 司福祺, 王珊珊, 白文广, 周海金, 赵恒 2013 62 054206]
[17] Irie H, Kanaya Y, Akimoto H, Iwabuchi H, Shimizu A, Aoki K 2009 Atmos. Chem. Phys. 9 2741
[18] Halla J D, Wagner T, Beirle S, Brook J R, Hayden K L, OBrien J M, Ng A, Majonis D, Wenig M O, McLaren R 2011 Atmos. Chem. Phys. 11 12475
[19] Xu J, Xie P H, Si F Q, Li A, Liu W Q 2012 Acta Phys. Sin. 61 024204 (in Chinese) [徐晋, 谢品华, 司福褀, 李昂, 刘文清 2012 61 024204]
[20] Ibrahim O, Shaiganfar R, Sinreich R, Stein T, Platt U, Wagner T 2010 Atmos. Meas. Tech. 3 709
[21] Shaiganfar R, Beirle S, Sharma M, Chauhan A, Singh R P, Wagner T 2011 Atmos. Chem. Phys. 11 10871
[22] Wu F C, Xie P H, Li A, Chan K L, Hartl A, Wang Y, Si F Q, Zeng Y, Qin M, Xu J, Liu J G, Liu W Q, Wenig M 2013 Atmos. Meas. Tech. 6 2277
[23] Marquard L, Wagner T, Platt U 2000 J. Geophys. Res. 105 1315
[24] Kraus S.:DOASIS, 2006 PhD-thesis, University of Mannheim, Shaker Verlag, Heidelberg, Germany
[25] Van Roozendael C F 2001 IASB/BIRA, Brussel, Belgium, 2001
[26] Wang Y, Li A, Xie P H, Chen H, Mou F S, Xu J, Wu F C, Zeng Y, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 200705 (in Chinese) [王杨, 李昂, 谢品华, 陈浩, 牟福生, 徐晋, 吴丰成, 曾议, 刘建国, 刘文清 2013 62 200705]
[27] Levelt P F, van den Oord G H J, Dobber M R 2006 IEEE T. Geosci. Remote 44 1093
-
[1] Finlayson-Pitts B J, Pitts J N 1999 Chemistry of the Upper and Lower Atmosphere:Theory, Experiments, and Applications, San Diego, USA, Academic Press
[2] Kanaya Y, Irie H, Takashima H, Iwabuchi H, Akimoto H, Sudo K, Gu M, Chong J, Kim Y J, Lee H, Li A, Si F, Xu J, Xie P H, Liu W Q, Dzhola A, Postylyakov O, Ivanov V, Grechko E, Terpugova S, Panchenko M 2014 Atmos. Chem. Phys. Discuss. 14 2883
[3] Jang M, Kamens R M 2001 Environ. Sci. Technol. 35 3626
[4] World Health Organization:2006, Geneva, Switzerland
[5] Zhang Q, David G S, He K B, Wang Y, Richter A, Burrows J, Uno I, Jang Carey J, Chen D, Yao Z, Lei Y 2007 J. Geophys. Res. 112 D22306
[6] Mohr C, Richter R, De Carlo P F, Prevot A S H, Baltensperger U 2011 Atmos. Chem. Phys. 11 7465
[7] Pearl River Delta Regional Air Quality Monitoring Network A Report of Monitoring Results in 2006, 2006, Guangdong Provincial Environmental Protection Monitoring Centre and Environmental Protection Department, HKSAR (in Chinese) [粤港珠三角区域空气监控网络 2006 年监测结果报告, 广东省环境保护监测中心站和香港特别行政区环境保护署, 2006]
[8] Ren X B, Wang Y S 2009 Bulletin of Chinese Academy of Sciences 24 194 (in Chinese) [任小波, 王跃思 2009 中国科学院院刊 24 194]
[9] Han K M, Lee C K, Kim J, Song C H 2011 Atmos Environ 45 2962
[10] Li J, Wang Z, Wang X, Yamaji K, Takigawa M, Kanaya Y, Pochanart P, Liu Y, Irie H, Hu B, Tanimoto H, Akimoto H 2011 Atmos Environ 45 1817
[11] Wang M, Zhu T, Zhang J P, Zhang Q H, Lin W W, Li Y, Wang Z F 2011 Atmos. Chem. Phys. 11 11631
[12] Wang K, Jiang H, Zhang X, Zhou G 2011 International Journal of Remote Sensing 32 815
[13] Georgoulias A K, Kourtidis K A, Buchwitz M, Schneising O, Burrows J P 2011 International Journal of Remote Sensing 32 787
[14] Honninger G, von Friedeburg C, Platt U 2004 Atmos. Chem. Phys. 4 231
[15] Zhou H J, Liu W Q, Si F Q, Xie P H, Xu J, Dou K 2011 Acta Optica Sinica. 31 1101007 (in Chinese) [周海金, 刘文清, 司福褀, 谢品华, 徐晋, 窦科 2011 光学学报 31 1101007]
[16] Wang T, Wang P C, Yu H, Zhang X Y, Zhou B, Si F Q, Wang S S, Bai W G, Zhou H J, Zhao H 2013 Acta Phys. Sin. 62 054206 (in Chinese) [王婷, 王普才, 余环, 张兴赢, 周斌, 司福祺, 王珊珊, 白文广, 周海金, 赵恒 2013 62 054206]
[17] Irie H, Kanaya Y, Akimoto H, Iwabuchi H, Shimizu A, Aoki K 2009 Atmos. Chem. Phys. 9 2741
[18] Halla J D, Wagner T, Beirle S, Brook J R, Hayden K L, OBrien J M, Ng A, Majonis D, Wenig M O, McLaren R 2011 Atmos. Chem. Phys. 11 12475
[19] Xu J, Xie P H, Si F Q, Li A, Liu W Q 2012 Acta Phys. Sin. 61 024204 (in Chinese) [徐晋, 谢品华, 司福褀, 李昂, 刘文清 2012 61 024204]
[20] Ibrahim O, Shaiganfar R, Sinreich R, Stein T, Platt U, Wagner T 2010 Atmos. Meas. Tech. 3 709
[21] Shaiganfar R, Beirle S, Sharma M, Chauhan A, Singh R P, Wagner T 2011 Atmos. Chem. Phys. 11 10871
[22] Wu F C, Xie P H, Li A, Chan K L, Hartl A, Wang Y, Si F Q, Zeng Y, Qin M, Xu J, Liu J G, Liu W Q, Wenig M 2013 Atmos. Meas. Tech. 6 2277
[23] Marquard L, Wagner T, Platt U 2000 J. Geophys. Res. 105 1315
[24] Kraus S.:DOASIS, 2006 PhD-thesis, University of Mannheim, Shaker Verlag, Heidelberg, Germany
[25] Van Roozendael C F 2001 IASB/BIRA, Brussel, Belgium, 2001
[26] Wang Y, Li A, Xie P H, Chen H, Mou F S, Xu J, Wu F C, Zeng Y, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 200705 (in Chinese) [王杨, 李昂, 谢品华, 陈浩, 牟福生, 徐晋, 吴丰成, 曾议, 刘建国, 刘文清 2013 62 200705]
[27] Levelt P F, van den Oord G H J, Dobber M R 2006 IEEE T. Geosci. Remote 44 1093
计量
- 文章访问数: 5915
- PDF下载量: 7087
- 被引次数: 0