搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于O2-O2吸收的非相干宽带腔增强吸收光谱浓度反演方法研究

凌六一 谢品华 林攀攀 黄友锐 秦敏 段俊 胡仁志 吴丰成

引用本文:
Citation:

基于O2-O2吸收的非相干宽带腔增强吸收光谱浓度反演方法研究

凌六一, 谢品华, 林攀攀, 黄友锐, 秦敏, 段俊, 胡仁志, 吴丰成

A concentration retrieval method for incoherent broadband cavity-enhanced absorption spectroscopy based on O2-O2 absorption

Ling Liu-Yi, Xie Pin-Hua, Lin Pan-Pan, Huang You-Rui, Qin Min, Duan Jun, Hu Ren-Zhi, Wu Feng-Cheng
PDF
导出引用
  • 针对传统非相干宽带腔增强吸收光谱浓度反演方法的定量结果易受镜片反射率标定误差的影响问题, 提出了一种基于测量大气O2-O2吸收的浓度反演方法. 该方法是将非相干宽带腔增强吸收光谱技术的光学增强腔等效成吸收光程不随波长变化的多次反射池, 首先根据测得的宽带腔增强大气吸收谱和参考谱计算出光学厚度, 并应用差分光学吸收光谱算法拟合修正后的气体吸收截面到光学厚度, 反演得到大气中O2-O2以及被测气体的柱浓度, 然后根据O2-O2在大气中的含量已知且相对稳定这一特性, 确定出等效多次反射池的吸收光程, 最后从被测气体的柱浓度中扣除吸收光程信息得到被测气体的浓度值. 以监测大气中NO2实验为例, 应用该方法在454-487 nm波段反演得到了大气NO2的浓度(1-30 ppbv范围内), 并将反演结果与传统浓度反演方法的结果进行了对比, 发现两者的不一致性在7%以内. 实验结果表明, 非相干宽带腔增强吸收光谱技术可以利用大气O2-O2的吸收来定量其他被测气体的浓度, 而且定量结果对镜片反射率的标定误差不敏感.
    Incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) has a very high detection sensitivity, nevertheless the quantitative results retrieved by the traditional concentration retrieval method are affected by the calibration error of mirror reflectivity. Therefore, in this paper we present another concentration retrieval method based on the measurements of atmospheric O2-O2 absorption. In this method the optical cavity of IBBCEAS is equivalent to a multi-reflection cell, in which the optical path length is independent of the wavelength, i.e. a constant. First, we get the slanting column concentrations of atmospheric O2-O2 and other trace gases measured by using the differential optical absorption spectroscopy (DOAS) to fit the corrected cross sections of the measured gases to the optical density from the IBBCEAS absorption spectra and reference spectra. Second, the optical path length of an equivalent cell is determined by the known concentrations of O2-O2 in the atmosphere. Third, the concentrations measured for trace gases are retrieved by the deduction of absorption optical path length from the obtained slanting column concentrations. The above method is demonstrated by measuring the atmospheric NO2 with an IBBCEAS instrument in the range of 454-487 nm. Atmospheric NO2 concentrations retrieved by this method are compared with those by the traditional method, and the difference between them is shown to be less than 7%. Experimental results show that the absorption of atmospheric O2-O2 can be used to quantify other trace gases when measured by IBBCEAS, and, above all, the quantitative results are almost insensitive to the calibration error from mirror reflectivity.
    • 基金项目: 国家自然科学基金(批准号:41305139,61108031,41275038)、安徽省自然科学基金(批准号:1408085QD75)、中国科学院战略性先导科技专项(B类)(批准号:XDB05040200)、国家高技术研究发展计划(863计划)(批准号:2014AA06A511,2014AA06A508)和中国科学院环境光学与技术重点实验室开放基金(批准号:2005DP173065-2013-05)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41305139, 61108031, 41275038), the Natural Science Foundation of Anhui Province, China(Grant No. 1408085QD75), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB05040200), the National High Technology Research and Development Program of China (Grant Nos. 2014AA06A511, 2014AA06A508), and the Key Laboratory of Environmental Optics & Technology, Chinese Academy of Sciences (Grant No. 2005DP173065-2013-05).
    [1]

    Paul B, Scherer J J, Okeefe A, Saykally R J 1997 Laser Focus World 33 71

    [2]

    Provencal R, Gupta M, Owano T G, Baer D S, Ricci K N, O'Keefe A, Podolske J R 2005 Appl. Optics 44 6712

    [3]

    Paul L K, Ezra C W, Scott C H, Andrew F 2008 Environ. Sci. Technol. 42 6040

    [4]

    Fiedler S E, Hese A A, Ruth A 2003 Chem. Phys. Lett. 371 284

    [5]

    Zhao W X, Dong M L, Chen W D, Gu X J, Hu C J, Gao X M, Huang W, Zhang W J 2013 Analy. Chem. 85 2260

    [6]

    Langridge J M, Ball S M, Shillings A J L, Jones R L 2008 Rev. Sci. Instrum. 79 123110

    [7]

    Wu T, Zha Q Z, Chen W D, Xu Z, Wang T, He X D 2014 Atmos. Environ. 95 544

    [8]

    Wu T, Zhao W X, Chen W D, Zhang W J, Gao X M 2009 Appl. Phys. B-Lasers O 94 85

    [9]

    Thalman R, Volkamer R 2010 Atmos. Meas. Tech. 3 1797

    [10]

    Wu T, Chen W X, Fertein E, Cazier F, Dewaele D, Gao X M 2011 Appl. Phys. B 106 501

    [11]

    Ling L Y, Qin M, Xie P H, Hu R Z, Fang W, Jiang Y, Liu J G, Liu W Q 2012 Acta Phys. Sin. 61 140703 (in Chinese) [凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清 2012 61 140703]

    [12]

    Kennedy O J, Ouyang B, Langridge J M, Daniels M J S, Bauguitte S, Freshwater R, McLeod M W, Ironmonger C, Sendall J, Norris O, Nightingale R, Ball S M, Jones R L 2011 Atmos. Meas. Tech. 4 3499

    [13]

    Venables D S, Gherman T, Orphal J, Wenger J C, Ruth A A 2006 Environ. Sci. Technol. 40 6758

    [14]

    Meinen J, Thieser J, Platt U, Leisner T 2010 Atmos. Chem. Phys. 10 3901

    [15]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779

    [16]

    Ball S M, Langridge J M, Jones R L 2004 Chem. Phys. Lett. 398 68

    [17]

    Chen J, Venables D S 2010 Atmos. Meas. Tech. 3 4571

    [18]

    Xu J, Xie P H, Si F Q, Li A, Wu F C, Wang Y, Liu J G, Liu W Q, Hartl A, Lok C K 2014 Chinese Physics B 23 094210

    [19]

    Frieß U, Monks P S, Remedios J J, Rozanov A, Sinreich R, Wagner T, Platt U 2006 J. Geophys. Res. 111 D14203

    [20]

    Wagner T, Deutschmann T, Platt U 2009 Atmos. Meas. Tech. 2 495

    [21]

    Si F Q, Xie P H, Dou K, Zhan K, Liu Y, Xu J, Liu W Q 2010 Acta Phys. Sin. 59 2867 (in Chinese) [司福祺, 谢品华, 窦科, 詹铠, 刘宇, 徐晋, 刘文清 2010 59 2867]

    [22]

    Platt U, Perner D, Pätz H W 1979 J. Geophys. Res. 84 6329

    [23]

    Platt U, Meinen J, Poehler D, Leisner T 2009 Atmos. Meas. Tech. 2 713

    [24]

    Sneep M, Ubachs W 2005 J. Quantum Spectrosc. Radiat. Transf. 92 293

    [25]

    Voigt S, Orphal J, Burrows J P 2002 J. Photoch. Photobio. A 149 1

    [26]

    Greenblatt G D, Orlando J J, Burkholder J B, Ravishankara A R 1990 J. Geophys. Res. 95 18577

    [27]

    Rothman L, Barbe A, Benner DC, Brown L, Camy-Peyret C, Carleer M, Chance K, Clerbaux C, Dana V, Devi V, Fayt A, Flaud JM, Gamache R, Goldman A, Jacquemart D, Jucks K, Laerty W, Mandin JY, Massie S, Nemtchinov V, Newnham D, Perrin A, Rinsland C, Schroeder J, Smith K, Smith M, Tang K, Toth R, Auwera JV, Varanasi P, Yoshino K 2003 J. Quantum Spectrosc. Radiat. Transf. 82 5

  • [1]

    Paul B, Scherer J J, Okeefe A, Saykally R J 1997 Laser Focus World 33 71

    [2]

    Provencal R, Gupta M, Owano T G, Baer D S, Ricci K N, O'Keefe A, Podolske J R 2005 Appl. Optics 44 6712

    [3]

    Paul L K, Ezra C W, Scott C H, Andrew F 2008 Environ. Sci. Technol. 42 6040

    [4]

    Fiedler S E, Hese A A, Ruth A 2003 Chem. Phys. Lett. 371 284

    [5]

    Zhao W X, Dong M L, Chen W D, Gu X J, Hu C J, Gao X M, Huang W, Zhang W J 2013 Analy. Chem. 85 2260

    [6]

    Langridge J M, Ball S M, Shillings A J L, Jones R L 2008 Rev. Sci. Instrum. 79 123110

    [7]

    Wu T, Zha Q Z, Chen W D, Xu Z, Wang T, He X D 2014 Atmos. Environ. 95 544

    [8]

    Wu T, Zhao W X, Chen W D, Zhang W J, Gao X M 2009 Appl. Phys. B-Lasers O 94 85

    [9]

    Thalman R, Volkamer R 2010 Atmos. Meas. Tech. 3 1797

    [10]

    Wu T, Chen W X, Fertein E, Cazier F, Dewaele D, Gao X M 2011 Appl. Phys. B 106 501

    [11]

    Ling L Y, Qin M, Xie P H, Hu R Z, Fang W, Jiang Y, Liu J G, Liu W Q 2012 Acta Phys. Sin. 61 140703 (in Chinese) [凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清 2012 61 140703]

    [12]

    Kennedy O J, Ouyang B, Langridge J M, Daniels M J S, Bauguitte S, Freshwater R, McLeod M W, Ironmonger C, Sendall J, Norris O, Nightingale R, Ball S M, Jones R L 2011 Atmos. Meas. Tech. 4 3499

    [13]

    Venables D S, Gherman T, Orphal J, Wenger J C, Ruth A A 2006 Environ. Sci. Technol. 40 6758

    [14]

    Meinen J, Thieser J, Platt U, Leisner T 2010 Atmos. Chem. Phys. 10 3901

    [15]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779

    [16]

    Ball S M, Langridge J M, Jones R L 2004 Chem. Phys. Lett. 398 68

    [17]

    Chen J, Venables D S 2010 Atmos. Meas. Tech. 3 4571

    [18]

    Xu J, Xie P H, Si F Q, Li A, Wu F C, Wang Y, Liu J G, Liu W Q, Hartl A, Lok C K 2014 Chinese Physics B 23 094210

    [19]

    Frieß U, Monks P S, Remedios J J, Rozanov A, Sinreich R, Wagner T, Platt U 2006 J. Geophys. Res. 111 D14203

    [20]

    Wagner T, Deutschmann T, Platt U 2009 Atmos. Meas. Tech. 2 495

    [21]

    Si F Q, Xie P H, Dou K, Zhan K, Liu Y, Xu J, Liu W Q 2010 Acta Phys. Sin. 59 2867 (in Chinese) [司福祺, 谢品华, 窦科, 詹铠, 刘宇, 徐晋, 刘文清 2010 59 2867]

    [22]

    Platt U, Perner D, Pätz H W 1979 J. Geophys. Res. 84 6329

    [23]

    Platt U, Meinen J, Poehler D, Leisner T 2009 Atmos. Meas. Tech. 2 713

    [24]

    Sneep M, Ubachs W 2005 J. Quantum Spectrosc. Radiat. Transf. 92 293

    [25]

    Voigt S, Orphal J, Burrows J P 2002 J. Photoch. Photobio. A 149 1

    [26]

    Greenblatt G D, Orlando J J, Burkholder J B, Ravishankara A R 1990 J. Geophys. Res. 95 18577

    [27]

    Rothman L, Barbe A, Benner DC, Brown L, Camy-Peyret C, Carleer M, Chance K, Clerbaux C, Dana V, Devi V, Fayt A, Flaud JM, Gamache R, Goldman A, Jacquemart D, Jucks K, Laerty W, Mandin JY, Massie S, Nemtchinov V, Newnham D, Perrin A, Rinsland C, Schroeder J, Smith K, Smith M, Tang K, Toth R, Auwera JV, Varanasi P, Yoshino K 2003 J. Quantum Spectrosc. Radiat. Transf. 82 5

  • [1] 熊枫, 彭志敏, 王振, 丁艳军, 吕俊复, 杜艳君. CO2/CO干扰下基于腔衰荡吸收光谱的痕量H2S浓度测量.  , 2023, 72(4): 043302. doi: 10.7498/aps.72.20221851
    [2] 孟凡昊, 秦敏, 方武, 段俊, 唐科, 张鹤露, 邵豆, 廖知堂, 谢品华. 基于迭代算法的大气HONO和NO2开放光路宽带腔增强吸收光谱测量.  , 2022, 71(12): 120701. doi: 10.7498/aps.71.20220150
    [3] 薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图. 基于激光外差探测的大气N2O吸收光谱测量与廓线反演.  , 2021, 70(21): 217801. doi: 10.7498/aps.70.20210710
    [4] 孙春艳, 王贵师, 朱公栋, 谈图, 刘锟, 高晓明. 基于高分辨率激光外差光谱反演大气CO2柱浓度及系统测量误差评估方法.  , 2020, 69(14): 144201. doi: 10.7498/aps.69.20200125
    [5] 李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清. 基于连续量子级联激光器的1103.4 cm–1处NH3混叠吸收光谱特性研究.  , 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [6] 梁帅西, 秦敏, 段俊, 方武, 李昂, 徐晋, 卢雪, 唐科, 谢品华, 刘建国, 刘文清. 机载腔增强吸收光谱系统应用于大气NO2空间高时间分辨率测量.  , 2017, 66(9): 090704. doi: 10.7498/aps.66.090704
    [7] 刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清. 机载成像差分吸收光谱技术测量区域NO2二维分布研究.  , 2015, 64(3): 034217. doi: 10.7498/aps.64.034217
    [8] 吴丰成, 李昂, 谢品华, 陈浩, 凌六一, 徐晋, 牟福生, 张杰, 申进朝, 刘建国, 刘文清. 车载多轴差分吸收光谱探测对流层NO2分布研究.  , 2015, 64(11): 114211. doi: 10.7498/aps.64.114211
    [9] 段俊, 秦敏, 方武, 凌六一, 胡仁志, 卢雪, 沈兰兰, 王丹, 谢品华, 刘建国, 刘文清. 非相干宽带腔增强吸收光谱技术应用于实际大气亚硝酸的测量.  , 2015, 64(18): 180701. doi: 10.7498/aps.64.180701
    [10] 高进云, 孙敦陆, 罗建乔, 李秀丽, 刘文鹏, 张庆礼, 殷绍唐. 高浓度Er3+掺杂Y3Sc2Ga3O12晶体的吸收光谱与晶体场模型研究.  , 2014, 63(14): 144205. doi: 10.7498/aps.63.144205
    [11] 王杨, 李昂, 谢品华, 陈浩, 牟福生, 徐晋, 吴丰成, 曾议, 刘建国, 刘文清. 多轴差分吸收光谱技术测量NO2对流层垂直分布及垂直柱浓度.  , 2013, 62(20): 200705. doi: 10.7498/aps.62.200705
    [12] 孙友文, 谢品华, 徐晋, 周海金, 刘诚, 王杨, 刘文清, 司福祺, 曾议. 采用加权函数修正的差分光学吸收光谱反演环境大气中的CO2垂直柱浓度.  , 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [13] 周海金, 刘文清, 司福祺, 窦科. 多轴差分吸收光谱技术测量近地面NO2体积混合比浓度方法研究.  , 2013, 62(4): 044216. doi: 10.7498/aps.62.044216
    [14] 王婷, 王普才, 余环, 张兴赢, 周斌, 司福祺, 王珊珊, 白文广, 周海金, 赵恒. 多轴差分吸收光谱仪反演大气NO2的比对试验.  , 2013, 62(5): 054206. doi: 10.7498/aps.62.054206
    [15] 董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊. 宽带腔增强吸收光谱技术应用于痕量气体探测及气溶胶消光系数测量.  , 2012, 61(6): 060702. doi: 10.7498/aps.61.060702
    [16] 王杨, 谢品华, 李昂, 曾议, 徐晋, 司福祺. 直射太阳光差分吸收光谱法测量合肥NO2 整层柱浓度.  , 2012, 61(11): 114209. doi: 10.7498/aps.61.114209
    [17] 徐晋, 谢品华, 司福祺, 李昂, 刘文清. 机载多轴差分吸收光谱技术获取对流层NO2垂直柱浓度的研究.  , 2012, 61(2): 024204. doi: 10.7498/aps.61.024204
    [18] 凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清. 基于LED光源的非相干宽带腔增强吸收光谱技术探测HONO和NO2.  , 2012, 61(14): 140703. doi: 10.7498/aps.61.140703
    [19] 周斌, 刘文清, 齐峰, 李振壁, 崔延军. 差分吸收光谱法测量大气污染的浓度反演方法研究.  , 2001, 50(9): 1818-1823. doi: 10.7498/aps.50.1818
    [20] 周 斌, 刘文清, 郑朝晖, 张玉钧, 宋炳超, 王锋平. 用太阳光谱测量空气中NO2浓度的方法研究.  , 2000, 49(12): 2507-2513. doi: 10.7498/aps.49.2507
计量
  • 文章访问数:  5752
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-01
  • 修回日期:  2015-01-29
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map