搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电学调制相消法和高功率蓝光LD的离轴石英增强光声光谱NO2传感器设计和优化

尹旭坤 郑华丹 董磊 武红鹏 刘小利 马维光 张雷 尹王保 贾锁堂

引用本文:
Citation:

基于电学调制相消法和高功率蓝光LD的离轴石英增强光声光谱NO2传感器设计和优化

尹旭坤, 郑华丹, 董磊, 武红鹏, 刘小利, 马维光, 张雷, 尹王保, 贾锁堂

Design and optimization of off-beam NO2 QEPAS sensor by use of E-MOCAM with a high power blue laser diode

Yin Xu-Kun, Zheng Hua-Dan, Dong Lei, Wu Hong-Peng, Liu Xiao-Li, Ma Wei-Guang, Zhang Lei, Yin Wang-Bao, Jia Suo-Tang
PDF
导出引用
  • 使用中心波长为450 nm的高功率多模蓝光激光管(LD)作为激励光源, 结合电学调制相消法和离轴石英增强光声光谱(QEPAS)配置, 设计了一款高灵敏二氧化氮传感器. 电学调制相消法使离轴QEPAS传感器的背景噪声降低至1/269, 在标准大气压和1 s积分时间下, 获得的探测灵敏度为4.5 ppb, 对应的归一化噪声等效吸收系数(1 )为2.210-8 cm-1W/Hz1/2. 延长积分时间到46 s, 灵敏度能够进一步下降到0.34 ppb. 气体流速对该传感器的影响也被研究.
    A highly sensitive NO2 optical sensor has been designed by means of combining the electrical modulation cancellation method (E-MOCAM) and off-beam quartz enhanced photoacoustic spectroscopy (QEPAS). A high power multimode blue laser diode emitting at around 450 nm is used as the excitation light source of the photoacoustic signal. In the E-MOCAM, the balance signal is generated from a dual-channel function generator and introduced to the pin of the quartz tuning fork (QTF) to balance out the huge background noise. The principle of the E-MOCAM is explained in detail from the perspective of equivalent circuit of QTF, and the background noise of the high power LD-based QEPAS sensor is analyzed. Results show that stray light noises coming from the LD beam and blocked by the resonator and the photoacoustic cell are dominated in all the noises. Gas flow noise of QEPAS sensor is also estimated, and excessive noise could be introduced by the gas flow even at a rate below 200 sccm. The gas flow noise is measured at different gas flow rate, from 60 to 200 sccm. Compared with the QEPAS sensor based on wavelength modulation, the sensor based on amplitude modulation, especially in the case of high power light source, is more sensitive to the gas flow. The ultimate background noise of the off-beam QEPAS sensor can be reduced by 269 times after the E-MOCAM is applied. The performance of the NO2 QEPAS sensor is evaluated in the NO2/N2 mixtures of different concentrations, ranging from ppb to ppm levels. In the case of the 2.85 ppm NO2 measurement, the SNR of 630 is achieved. A linear fitting is implemented to evaluate the response of the sensor, resulting in an R square value of 0.999. Allan plot is used to investigate the long term stability of the sensor. The original background noise produced from the off-beam QEPAS configuration is less than that from the on-beam QEPAS configuration, thus the combination of off-beam QEPAS configuration and E-MOCAM shows a better stability. A detection limit of 0.34 ppb (1, 46 s integration time) for NO2 in N2 at atmospheric pressure can be achieved, which corresponds to a normalized noise equivalent absorption coefficient of 2.210-8 cm-1W/Hz1/2.
    • 基金项目: 国家自然科学基金(批准号:61275213,61108030,61127017,61178009,61378047,61475093和61205216)、国家重点基础研究发展计划(973计划)(批准号:2012CB921603)、国家科技支撑计划(批准号:2013BAC14B01)、山西省青年科学基金(批准号:2013021004-1,2012021022-1)、山西省回国留学人员科研资助项目(批准号:2013-011)、山西省留学回国人员科技活动资金(批准号:2013-01)和山西省高等学校创新人才支持计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275213, 61108030, 61475093, 61127017, 61378047, 61178009, 61205216), the Basic Research Program of China (Grant No. 2012CB921603), the National Key Technology RD Program (Grant No. 2013BAC14B01), the Shanxi Natural Science Foundation, China (Grant Nos. 2013021004-1, 2012021022-1), the Shanxi Scholarship Council of China (Grant Nos. 2013-011, 2013-01), and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi.
    [1]

    Cao Y C, Jin W, Ho H L 2012 Sens. Actuators, B 174 24

    [2]

    Shao J, Lathdavong L, Thavixay P, Axner O 2007 J. Opt. Soc. Am. B 24 2294

    [3]

    Zhang Z Q, Ma B S, Jia S H 2013 Assembly and Manufacturing (ISAM) IEEE International Symposium 2013, p230

    [4]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [5]

    Ma Y F, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008

    [6]

    Liu Y Y, Dong L, Wu H P, Zheng H D, Ma W G, Zhang L, Yin W B, Jia S T 2013 Acta Phys. Sin. 62 220701 (in Chinese) [刘妍研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂 2013 62 220701]

    [7]

    Wu H P, Dong L, Zheng H D, Liu Y Y, Ma W G, Zhang L, Wang W Y, Zhu Q K, Yin W B, Jia S T 2013 Acta Phys. Sin. 62 070701 (in Chinese) [武红鹏, 董磊, 郑华丹, 刘研研, 马维光, 张雷, 王五一, 朱庆科, 尹王保, 贾锁堂 2013 62 070701]

    [8]

    Gong P, Xie L, Qi X Q, Wang R, Wang H, Chang M C, Yang H X, Sun F, Li G P 2015 Chin. Phys. B 24 014206

    [9]

    Dong L, Kosterev A A, Thomazy D, Tittel F K 2010 Appl. Phys. B 100 627

    [10]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [11]

    Wu H P, Dong L, Ren W, Yin W B, Ma W G, Zhang L, Jia S T, Tittel F K 2015 Sens. Actuators, B 206 364

    [12]

    Yi H M, Chen W D, Sun S W, Liu K, Tan T, Gao X M 2012 Opt. Express 20 9187

    [13]

    Böttger S, Köhring M, Willer U, Schade W 2013 Appl. Phys. B 113 227

    [14]

    Yi H M, Liu K, Chen W D, Tan T, Wang L, Gao X M 2011 Opt. Lett. 36 481

    [15]

    Spagnolo V, Dong L, Kosterev A A, Tittel F K 2012 Opt. Express 20 3401

    [16]

    Spagnolo V, Dong L, Kosterev A A, Thomazy D, Doty J H, Tittel F K 2011 Opt. Lett. 36 460

    [17]

    Spagnolo V, Dong L, Kosterev A A, Thomazy D, Doty J H, Tittel F K 2011 Appl. Phys. B 103 735

    [18]

    Zheng H D, Dong L, Yin X K, Liu X L, Wu H P, Zhang L, Ma W G, Yin W B, Jia S T 2015 Sens. Actuators, B 208 173

    [19]

    Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L, Morozov I V 2005 Rev. Sci. Instrum. 76 043105

    [20]

    Fritz A, Pitchon V 1997 Appl. Catal. B 13 1

    [21]

    Liu K, Yi H M, Kosterev A A, Chen W D, Dong L, Wang L, Tan T, Zhang W J, Tittel F K, Gao X M 2010 Rev. Sci. Instrum 81 103103

    [22]

    Dong L, Wright J, Peters B, Ferguson B A, Tittel F K, McWhorter S 2012 Appl. Phys. B 107 459

    [23]

    Wysocki G, Kosterev A A, Tittel F K 2006 Appl. Phys. B 85 301

  • [1]

    Cao Y C, Jin W, Ho H L 2012 Sens. Actuators, B 174 24

    [2]

    Shao J, Lathdavong L, Thavixay P, Axner O 2007 J. Opt. Soc. Am. B 24 2294

    [3]

    Zhang Z Q, Ma B S, Jia S H 2013 Assembly and Manufacturing (ISAM) IEEE International Symposium 2013, p230

    [4]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [5]

    Ma Y F, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008

    [6]

    Liu Y Y, Dong L, Wu H P, Zheng H D, Ma W G, Zhang L, Yin W B, Jia S T 2013 Acta Phys. Sin. 62 220701 (in Chinese) [刘妍研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂 2013 62 220701]

    [7]

    Wu H P, Dong L, Zheng H D, Liu Y Y, Ma W G, Zhang L, Wang W Y, Zhu Q K, Yin W B, Jia S T 2013 Acta Phys. Sin. 62 070701 (in Chinese) [武红鹏, 董磊, 郑华丹, 刘研研, 马维光, 张雷, 王五一, 朱庆科, 尹王保, 贾锁堂 2013 62 070701]

    [8]

    Gong P, Xie L, Qi X Q, Wang R, Wang H, Chang M C, Yang H X, Sun F, Li G P 2015 Chin. Phys. B 24 014206

    [9]

    Dong L, Kosterev A A, Thomazy D, Tittel F K 2010 Appl. Phys. B 100 627

    [10]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [11]

    Wu H P, Dong L, Ren W, Yin W B, Ma W G, Zhang L, Jia S T, Tittel F K 2015 Sens. Actuators, B 206 364

    [12]

    Yi H M, Chen W D, Sun S W, Liu K, Tan T, Gao X M 2012 Opt. Express 20 9187

    [13]

    Böttger S, Köhring M, Willer U, Schade W 2013 Appl. Phys. B 113 227

    [14]

    Yi H M, Liu K, Chen W D, Tan T, Wang L, Gao X M 2011 Opt. Lett. 36 481

    [15]

    Spagnolo V, Dong L, Kosterev A A, Tittel F K 2012 Opt. Express 20 3401

    [16]

    Spagnolo V, Dong L, Kosterev A A, Thomazy D, Doty J H, Tittel F K 2011 Opt. Lett. 36 460

    [17]

    Spagnolo V, Dong L, Kosterev A A, Thomazy D, Doty J H, Tittel F K 2011 Appl. Phys. B 103 735

    [18]

    Zheng H D, Dong L, Yin X K, Liu X L, Wu H P, Zhang L, Ma W G, Yin W B, Jia S T 2015 Sens. Actuators, B 208 173

    [19]

    Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L, Morozov I V 2005 Rev. Sci. Instrum. 76 043105

    [20]

    Fritz A, Pitchon V 1997 Appl. Catal. B 13 1

    [21]

    Liu K, Yi H M, Kosterev A A, Chen W D, Dong L, Wang L, Tan T, Zhang W J, Tittel F K, Gao X M 2010 Rev. Sci. Instrum 81 103103

    [22]

    Dong L, Wright J, Peters B, Ferguson B A, Tittel F K, McWhorter S 2012 Appl. Phys. B 107 459

    [23]

    Wysocki G, Kosterev A A, Tittel F K 2006 Appl. Phys. B 85 301

  • [1] 刘建鑫, 赵刚, 周月婷, 周晓彬, 马维光. 高反射腔镜双折射效应对腔增强光谱技术的影响.  , 2022, 71(8): 084202. doi: 10.7498/aps.71.20212090
    [2] 卞晓鸽, 周胜, 张磊, 何天博, 李劲松. 基于标准样品回归算法和腔增强光谱的NO2检测方法.  , 2021, 70(5): 050702. doi: 10.7498/aps.70.20201322
    [3] 马欲飞. 基于石英增强光声光谱的气体传感技术研究进展.  , 2021, 70(16): 160702. doi: 10.7498/aps.70.20210685
    [4] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展.  , 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [5] 冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林. 表面等离激元“热点”的可控激发及近场增强光谱学.  , 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [6] 周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明. 基于7.6 m量子级联激光的光声光谱探测N2O气体.  , 2018, 67(8): 084201. doi: 10.7498/aps.67.20172696
    [7] 刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生. 基于模场自积增强检测的光纤声光旋转传感器.  , 2018, 67(1): 014208. doi: 10.7498/aps.67.20171525
    [8] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定.  , 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [9] 何应, 马欲飞, 佟瑶, 彭振芳, 于欣. 光纤倏逝波型石英增强光声光谱技术.  , 2018, 67(2): 020701. doi: 10.7498/aps.67.20171881
    [10] 韩伟, 冯斌, 郑奎兴, 朱启华, 郑万国, 巩马理. 高功率激光装置熔石英紫外损伤增长研究.  , 2016, 65(24): 246102. doi: 10.7498/aps.65.246102
    [11] 赵彦东, 方勇华, 李扬裕, 吴军, 李大成, 崔方晓, 刘家祥, 王安静. 基于椭圆腔共振的石英增强光声光谱理论研究.  , 2016, 65(19): 190701. doi: 10.7498/aps.65.190701
    [12] 马欲飞, 何应, 于欣, 于光, 张静波, 孙锐. 基于中红外量子级联激光器和石英增强光声光谱的CO超高灵敏度检测研究.  , 2016, 65(6): 060701. doi: 10.7498/aps.65.060701
    [13] 李克武, 王志斌, 杨常青, 张瑞, 王耀利, 宋雁鹏. 基于声光滤光和液晶相位调谐的高光谱全偏振成像新技术.  , 2015, 64(14): 140702. doi: 10.7498/aps.64.140702
    [14] 汪超, 韦辉, 王江峰, 姜有恩, 范薇, 李学春. 激光二极管抽运的高重频高平均功率Nd:YAG激光器.  , 2014, 63(22): 224204. doi: 10.7498/aps.63.224204
    [15] 余荣, 江月松, 余兰, 欧军. 利用散射光增强弱吸收固体混合物中主要光吸收物质的光声光谱特征.  , 2013, 62(8): 087802. doi: 10.7498/aps.62.087802
    [16] 武红鹏, 董磊, 郑华丹, 刘研研, 马维光, 张雷, 王五一, 朱庆科, 尹王保, 贾锁堂. 基于微型非共振腔的石英增强光声光谱用于氦气纯度分析的实验研究.  , 2013, 62(7): 070701. doi: 10.7498/aps.62.070701
    [17] 刘研研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂. 全光型石英增强光声光谱.  , 2013, 62(22): 220701. doi: 10.7498/aps.62.220701
    [18] 王贵师, 易红明, 蔡廷栋, 汪磊, 谈图, 张为俊, 高晓明. 基于石英音叉增强型光谱技术(QEPAS)的实时探测系统研究.  , 2012, 61(12): 120701. doi: 10.7498/aps.61.120701
    [19] 张玉萍, 张会云, 钟凯, 王鹏, 李喜福, 姚建铨. 高效高稳定高光束质量声光调Q绿光激光器的研究.  , 2009, 58(5): 3193-3197. doi: 10.7498/aps.58.3193
    [20] 邓金泉, 安绍锋, 刘金庭, 谭永芳. 强光谱灯抽运87Rb激射器.  , 1993, 42(11): 1774-1778. doi: 10.7498/aps.42.1774
计量
  • 文章访问数:  6223
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-23
  • 修回日期:  2015-01-30
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map