搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚酰亚胺/钽铌酸钾纳米颗粒复合材料结构与机械性能分子动力学模拟

林家齐 李晓康 杨文龙 孙洪国 谢志滨 修翰江 雷清泉

引用本文:
Citation:

聚酰亚胺/钽铌酸钾纳米颗粒复合材料结构与机械性能分子动力学模拟

林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉

Molecular dynamics simulation study on the structure and mechanical properties of polyimide/KTa0.5Nb0.5O3 nanoparticle composites

Lin Jia-Qi, Li Xiao-Kang, Yang Wen-Long, Sun Hong-Guo, Xie Zhi-Bin, Xiu Han-jiang, Lei Qing-Quan
PDF
导出引用
  • 利用多尺度建模方法构建了聚酰亚胺/钽铌酸钾纳米颗粒复合物模型, 通过分子动力学模拟研究了不同尺寸钽铌酸钾纳米颗粒(5.5, 8.0, 9.4, 10.5, 11.5 Å)对复合材料的结构、弹性模量和相互作用能的影响规律, 并通过计算纳米颗粒表面原子键能和单位表面积原子数目探究了复合物机械性能提高的内部机理. 聚酰亚胺和聚酰亚胺/钽铌酸钾复合材料的杨氏模量分别为2.91和3.17 GPa, 泊松比分别为0.37和0.35, 钽铌酸钾纳米颗粒的引入可以显著改善聚酰亚胺的机械性能. 纳米颗粒表面原子的键能为8.62-54.37 kJ·mol-1, 表明颗粒与基体主要通过范德华力作用结合且有氢键存在. 计算结果表明, 相同掺杂比例下, 纳米颗粒尺寸越小, 纳米颗粒表面原子数目越大, 颗粒与基体作用更强, 杨氏模量的提高幅度越大, 尺寸效应越显著. 因此, 掺杂小尺寸纳米颗粒是提高聚酰亚胺机械性能的有效途径.
    The polyimide/potassium tantalite niobate (PI/KTa0.5Nb0.5O3) nanoparticle composite model is established by a multi-scale modeling method. The influences of KTa0.5Nb0.5O3 nanoparticles with different sizes (5.5, 8.0, 9.4, 10.5, 11.5 Å) on the structure, elastic modulus and interaction energy of the polyimidebased nanocomposites are investigated by the molecular dynamics simulation. The cell parameters, cohesive energy density, solubility parameter, Young’s modulus and Poisson’s ratio are calculated. Moreover, the bond energy and the number of atoms per unit surface area of the nanoparticles are analyzed to explore the internal mechanism of mechanical property improvement. The results demonstrate that the density of PI matrix is 1.24-1.35 g/cm3, the cohesive energy density of PI matrix is 2.025×108 J/m3, and the solubility parameter of PI matrix is 1.422×104 (J/m3)1/2, which are consist with the actual PI parameters. Meanwhile, the Young’s moduli of the PI and PI/KTa0.5Nb0.5O3 composites are respectively 2.914 GPa and 3.169 GPa, and the Poisson’s ratios are respectively 0.370 and 0.353, which illustrate that the mechanical properties of the PI could be significantly improved by introducing the KTa0.5Nb0.5O3 nanoparticles. At the same pressure, the increases of Young’s modulus with temperature are basically the same without and with doping the KTa0.5Nb0.5O3 nanoparticles into the PI matrix; and when the temperatures are different, the standard deviations of elastic moduli of the PI matrix and PI/KTa0.5Nb0.5O3 composite are almost the same. No matter what the pressures and the temperature are, the Young’s modulus of PI/KTa0.5Nb0.5O3 composite is always larger than that of PI matrix. These all indicate that the effect of KTa0.5Nb0.5O3 nanoparticle on elastic modulus has a similar variation rule under the selected pressure and temperature conditions. In addition, the bond energies of particle surface atoms are 8.62-54.37 kJ·mol-1, which shows that the binding force between particles and the matrix is mainly van der Waals force, and hydrogen bonds exist at the same time. When the doping concentration is fixed, the proportion of nanoparticles surface atoms increases significantly as the size decreases, the interaction between particles and the matrix becomes stronger, the Young’s modulus increases obviously and the size effect is more significant. Therefore, it is confirmed that the doping small size KTa0.5Nb0.5O3 nanoparticles into the polyimide matrix is an effective way to improve the mechanical properties of the composite.
    • 基金项目: 国家自然科学基金(批准号:11444004)、黑龙江省自然科学基金(批准号:E201258)和哈尔滨市科技创新人才研究专项资金优秀学科带头人项目(批准号:2013RFXXJ068)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11444004), the Natural Science Foundation of Heilongjiang Province, China (Grant No. E201258), and the Scientific Innovation Talents Research Special Funds for Outstanding Academic Leaders Projects of Harbin City, China (Grant No. 2013RFXXJ068).
    [1]

    Yang S, Cho M 2008 Appl. Phys. Lett. 93 043111

    [2]

    Termonia Y 2010 Polymer 51 4448

    [3]

    Riggleman R A, Toepperwein G, Papakonstantopoulos G J, Barrat J L, de Pablo J J 2009 J. Chem. Phys. 130 244903

    [4]

    Liu J, Wu S, Zhang L, Wang W, Cao D 2011 Phys. Chem. Chem. Phys. 13 518

    [5]

    Buxton G A, Lee J Y, Balazs A C 2003 Macromolecules 36 9631

    [6]

    Rowan C K, Paci I 2011 J. Phys. Chem. C 115 8316

    [7]

    Qiu T, Kong F, Yu X Q, Zhang W J, Lang X Z, Chu P K 2009 Appl. Phys. Lett. 95 213104

    [8]

    Afzal A B, Akhtar M J 2011 Chin. Phys. B 20 058102

    [9]

    Wescott J T, Kung P, Maiti A 2007 Appl. Phys. Lett. 90 033116

    [10]

    Nelson J, Kwiatkowski J J, Kirkpatrick J, Frost J M 2009 Acc. Chem. Res. 42 1768

    [11]

    Athanasopoulos S, Kirkpatrick J, Martinez D, Frost J M, Foden C M, Walker A B, Nelson J 2007 Nano Lett. 7 1785

    [12]

    Buxton G A, Clarke N 2006 Phys. Rev. B 74 085207

    [13]

    Vukmirovic N, Wang L L 2009 Nano Lett. 9 3996

    [14]

    Zhao D L, Zeng X W, Shen Z M 2005 Acta Phys. Sin. 54 3878 (in Chinese) [赵东林, 曾宪伟, 沈曾民 2005 54 3878]

    [15]

    Xu R X, Chen W, Zhou J 2006 Acta Phys. Sin. 55 4292 (in Chinese) [徐任信, 陈文, 周静 2006 55 4292]

    [16]

    Cao X Z, Merlitz H, Sommer J U, Wu C X 2012 Chin. Phys. B 21 118202

    [17]

    Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J Y, Ha C S 2012 Prog. Polym. Sci. 37 907

    [18]

    Feng B R 1995 Chem. World 10 515 (in Chinese) [冯宝荣 1995 化学世界 10 515]

    [19]

    Li S Z, Wu J H, Zhu X H, Zhang L 2002 New. Chem. Mater. 30 19 (in Chinese) [李生柱, 吴建华, 朱小华, 张亮 2002 化工新型材料 30 19]

    [20]

    Katz M, Theis R J 1997 IEEE Electr. Insul. M. 13 24

    [21]

    Morikawa A, Iyoku Y, Kakimoto M, Imai Y 1992 Polym. J. 24 107

    [22]

    Dang Z M, Lin Y Q, Xu H P, Shi C Y, Li S T, Bai J B 2008 Adv. Funct. Mater. 18 1509

    [23]

    Dang Z M, Zhou T, Yao S H, Yuan J K, Zha J W, Song H T, Li J Y, Chen Q, Yang W T, Bai J B 2009 Adv. Mater. 21 2077

    [24]

    Lin J Q, Xie Z B, Yang W L, Zhang P P, Liu Y, Lin H, Li X K 2013 J. Appl. Polym. Sci. 131 39828

    [25]

    Yan L T, Xie X M 2013 Prog. Polym. Sci. 38 369

    [26]

    Choi J, Yu S, Yang S, Cho M 2011 Polymer 52 5197

    [27]

    Choi J, Yang S, Yu S, Shin H, Cho M 2012 Polymer 53 5178

    [28]

    Yang S, Yu S, Ryu J, Cho J M, Kyoung W, Han D S, Cho M 2013 Int. J. Plast. 41 124

    [29]

    Brown D, Marcadon V, Mele P, Alberola N D 2008 Macromolecules 41 1499

    [30]

    Adnan A, Sun C T, Mahfuz H 2007 Compos. Sci. Technol. 67 348

    [31]

    Cho J, Sun C T 2007 Comput. Mater. Sci. 41 54

    [32]

    Odegard G M, Clancy T C, Gates T S 2005 Polymer 46 553

    [33]

    Golzar K, Sepideh A I, Amani M, Modarress H 2014 J. Membr. Sci. 451 117

    [34]

    Sun W F, Wang X 2013 Acta Phys. Sin. 62 186202 (in Chinese) [孙伟峰, 王暄 2013 62 186202]

    [35]

    Lin J Q, Zhang P P, Yang W L, Xie Z B, Liu Y, Lin H, Li X K, Lei Q Q 2013 Polym. Composite 35 969

    [36]

    Parrinello M, Rahman A 1982 J. Chem. Phys. 76 2662

    [37]

    Parrinello M, Rahman A, Vashishta P 1983 Phys. Rev. Lett. 50 1073

    [38]

    Yu S, Yang S, Cho M 2009 Polymer 50 945

    [39]

    Ding M X 2006 Polyimide: chemistry, relationship between structure and properties and materials (Beijing: Science Press) pp528-533 (in Chinese) [丁孟贤 2006 聚酰亚胺-化学, 结构与性能的关系及材料 (北京: 科学出版社) 第528-533页]

    [40]

    Zhu S M, Sun H, Cheng S Y, Yan D Y 2001 Polym. Mater. Sci. Eng. 17 109 (in Chinese) [朱申敏, 孙辉, 程时远, 颜德岳 2001 高分子材料科学与工程 17 109]

    [41]

    Xiang H B, Huang Z, Zhu J, Chen L, Yu J R, Hu Z M 2011 Polym. Mater. Sci. Eng. 27 117 (in Chinese) [向红兵, 黄忠, 诸静, 陈蕾, 于俊荣, 胡祖明 2011 高分子材料科学与工程 27 117]

    [42]

    Wu M S, Zhou Z L 1999 Fiber Comp. 1 37 (in Chinese) [吴妙生, 周祝林 1999 纤维复合材料 1 37]

  • [1]

    Yang S, Cho M 2008 Appl. Phys. Lett. 93 043111

    [2]

    Termonia Y 2010 Polymer 51 4448

    [3]

    Riggleman R A, Toepperwein G, Papakonstantopoulos G J, Barrat J L, de Pablo J J 2009 J. Chem. Phys. 130 244903

    [4]

    Liu J, Wu S, Zhang L, Wang W, Cao D 2011 Phys. Chem. Chem. Phys. 13 518

    [5]

    Buxton G A, Lee J Y, Balazs A C 2003 Macromolecules 36 9631

    [6]

    Rowan C K, Paci I 2011 J. Phys. Chem. C 115 8316

    [7]

    Qiu T, Kong F, Yu X Q, Zhang W J, Lang X Z, Chu P K 2009 Appl. Phys. Lett. 95 213104

    [8]

    Afzal A B, Akhtar M J 2011 Chin. Phys. B 20 058102

    [9]

    Wescott J T, Kung P, Maiti A 2007 Appl. Phys. Lett. 90 033116

    [10]

    Nelson J, Kwiatkowski J J, Kirkpatrick J, Frost J M 2009 Acc. Chem. Res. 42 1768

    [11]

    Athanasopoulos S, Kirkpatrick J, Martinez D, Frost J M, Foden C M, Walker A B, Nelson J 2007 Nano Lett. 7 1785

    [12]

    Buxton G A, Clarke N 2006 Phys. Rev. B 74 085207

    [13]

    Vukmirovic N, Wang L L 2009 Nano Lett. 9 3996

    [14]

    Zhao D L, Zeng X W, Shen Z M 2005 Acta Phys. Sin. 54 3878 (in Chinese) [赵东林, 曾宪伟, 沈曾民 2005 54 3878]

    [15]

    Xu R X, Chen W, Zhou J 2006 Acta Phys. Sin. 55 4292 (in Chinese) [徐任信, 陈文, 周静 2006 55 4292]

    [16]

    Cao X Z, Merlitz H, Sommer J U, Wu C X 2012 Chin. Phys. B 21 118202

    [17]

    Liaw D J, Wang K L, Huang Y C, Lee K R, Lai J Y, Ha C S 2012 Prog. Polym. Sci. 37 907

    [18]

    Feng B R 1995 Chem. World 10 515 (in Chinese) [冯宝荣 1995 化学世界 10 515]

    [19]

    Li S Z, Wu J H, Zhu X H, Zhang L 2002 New. Chem. Mater. 30 19 (in Chinese) [李生柱, 吴建华, 朱小华, 张亮 2002 化工新型材料 30 19]

    [20]

    Katz M, Theis R J 1997 IEEE Electr. Insul. M. 13 24

    [21]

    Morikawa A, Iyoku Y, Kakimoto M, Imai Y 1992 Polym. J. 24 107

    [22]

    Dang Z M, Lin Y Q, Xu H P, Shi C Y, Li S T, Bai J B 2008 Adv. Funct. Mater. 18 1509

    [23]

    Dang Z M, Zhou T, Yao S H, Yuan J K, Zha J W, Song H T, Li J Y, Chen Q, Yang W T, Bai J B 2009 Adv. Mater. 21 2077

    [24]

    Lin J Q, Xie Z B, Yang W L, Zhang P P, Liu Y, Lin H, Li X K 2013 J. Appl. Polym. Sci. 131 39828

    [25]

    Yan L T, Xie X M 2013 Prog. Polym. Sci. 38 369

    [26]

    Choi J, Yu S, Yang S, Cho M 2011 Polymer 52 5197

    [27]

    Choi J, Yang S, Yu S, Shin H, Cho M 2012 Polymer 53 5178

    [28]

    Yang S, Yu S, Ryu J, Cho J M, Kyoung W, Han D S, Cho M 2013 Int. J. Plast. 41 124

    [29]

    Brown D, Marcadon V, Mele P, Alberola N D 2008 Macromolecules 41 1499

    [30]

    Adnan A, Sun C T, Mahfuz H 2007 Compos. Sci. Technol. 67 348

    [31]

    Cho J, Sun C T 2007 Comput. Mater. Sci. 41 54

    [32]

    Odegard G M, Clancy T C, Gates T S 2005 Polymer 46 553

    [33]

    Golzar K, Sepideh A I, Amani M, Modarress H 2014 J. Membr. Sci. 451 117

    [34]

    Sun W F, Wang X 2013 Acta Phys. Sin. 62 186202 (in Chinese) [孙伟峰, 王暄 2013 62 186202]

    [35]

    Lin J Q, Zhang P P, Yang W L, Xie Z B, Liu Y, Lin H, Li X K, Lei Q Q 2013 Polym. Composite 35 969

    [36]

    Parrinello M, Rahman A 1982 J. Chem. Phys. 76 2662

    [37]

    Parrinello M, Rahman A, Vashishta P 1983 Phys. Rev. Lett. 50 1073

    [38]

    Yu S, Yang S, Cho M 2009 Polymer 50 945

    [39]

    Ding M X 2006 Polyimide: chemistry, relationship between structure and properties and materials (Beijing: Science Press) pp528-533 (in Chinese) [丁孟贤 2006 聚酰亚胺-化学, 结构与性能的关系及材料 (北京: 科学出版社) 第528-533页]

    [40]

    Zhu S M, Sun H, Cheng S Y, Yan D Y 2001 Polym. Mater. Sci. Eng. 17 109 (in Chinese) [朱申敏, 孙辉, 程时远, 颜德岳 2001 高分子材料科学与工程 17 109]

    [41]

    Xiang H B, Huang Z, Zhu J, Chen L, Yu J R, Hu Z M 2011 Polym. Mater. Sci. Eng. 27 117 (in Chinese) [向红兵, 黄忠, 诸静, 陈蕾, 于俊荣, 胡祖明 2011 高分子材料科学与工程 27 117]

    [42]

    Wu M S, Zhou Z L 1999 Fiber Comp. 1 37 (in Chinese) [吴妙生, 周祝林 1999 纤维复合材料 1 37]

  • [1] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟.  , 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [2] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为.  , 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [3] 查俊伟, 王帆. 高导热聚酰亚胺电介质薄膜研究进展.  , 2022, 71(23): 233601. doi: 10.7498/aps.71.20221398
    [4] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟.  , 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [5] 黄多辉, 万明杰, 杨俊升. 聚甲基丙烯酸甲酯与碳纳米管纳米复合材料玻璃化转变及其非线性力学行为的分子动力学模拟.  , 2021, 70(21): 218101. doi: 10.7498/aps.70.20210752
    [6] 刘婧, 张海波. 空间电子辐照聚合物的充电特性和微观机理.  , 2019, 68(5): 059401. doi: 10.7498/aps.68.20181925
    [7] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟.  , 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [8] 侯堃, 张占文, 黄勇, 韦建军. 气相沉积法制备聚酰亚胺薄膜不同单体配比的表征及其性能影响.  , 2016, 65(3): 035203. doi: 10.7498/aps.65.035203
    [9] 王松, 武占成, 唐小金, 孙永卫, 易忠. 聚酰亚胺电导率随温度和电场强度的变化规律.  , 2016, 65(2): 025201. doi: 10.7498/aps.65.025201
    [10] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响.  , 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [11] 刘婧, 张海波. 空间多能电子辐照聚合物充电过程的稳态特性.  , 2014, 63(14): 149401. doi: 10.7498/aps.63.149401
    [12] 司丽娜, 王晓力. 纳米沟槽表面黏着接触过程的分子动力学模拟研究.  , 2014, 63(23): 234601. doi: 10.7498/aps.63.234601
    [13] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响.  , 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [14] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究.  , 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [15] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究.  , 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [16] 颜克凤, 李小森, 孙丽华, 陈朝阳, 夏志明. 储氢笼型水合物生成促进机理的分子动力学模拟研究.  , 2011, 60(12): 128801. doi: 10.7498/aps.60.128801
    [17] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟.  , 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [18] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟.  , 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [19] 何 兰, 沈允文, 容启亮, 徐 雁. 基于分子动力学模拟的主链型液晶聚合物的新模型.  , 2006, 55(9): 4407-4413. doi: 10.7498/aps.55.4407
    [20] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟.  , 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
计量
  • 文章访问数:  7658
  • PDF下载量:  4485
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-08
  • 修回日期:  2015-01-14
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map