搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喷射成形粉末高温合金FGH4095M的制备及组织特征

王天天 葛昌纯 贾崇林 汪杰 谷天赋 吴海新

引用本文:
Citation:

喷射成形粉末高温合金FGH4095M的制备及组织特征

王天天, 葛昌纯, 贾崇林, 汪杰, 谷天赋, 吴海新

Fabrication and microstucture of spray formed powder metallurgy superalloy FGH4095M

Wang Tian-Tian, Ge Chang-Chun, Jia Chong-Lin, Wang Jie, Gu Tian-Fu, Wu Hai-Xin
PDF
导出引用
  • 喷射成形是一种近净成形的在粉末冶金气体雾化制粉技术基础上发展起来的快速凝固技术. 本文采用喷射成形技术制备成分优化后的FGH4095M合金, 研究了喷射成形FGH4095M合金沉积坯的致密度、显微组织特征, 特别是研究了喷射成形高温合金组织中特殊形貌的γ’相. 研究表明, 致密度与沉积坯部位有关, 底部致密度最高, 可达99.63%, 热等静压后的致密度可达100%. 喷射成形合金组织以均匀细小的等轴晶为主, 不存在原始颗粒边界; 一次γ’ 相尺寸约为0.6-0.8 μm, 二次γ’相尺寸约为0.1-0.5 μm, 在二次γ’相的间隙中有少量尺寸约为10-20 nm的三次γ’相. 喷射成形FGH4095M 合金中的二次 γ’相中出现特殊形貌的γ’相, 这是由单个γ’颗粒分裂形成, 与沉积过程的低冷却速度有关. 分裂过程是γ’颗粒总能量降低的过程, γ’颗粒间的弹性交互作用能起到主导作用. 对分裂γ’相的等效直径进行统计, 得到γ’ 相等效直径超过0.40 μm 后, 会出现分裂趋势. 合金具备优异的拉伸性能, 室温塑性得到显著提高, 出现γ’ 相分裂的特殊形貌组织是否对合金性能的提高产生直接影响仍需进行进一步的研究.
    Spray forming is a kind of near-net-shaped rapid solidification process based on powder metallurgy gas atomization technology. In this work, the FGH4095M is fabricated by spray forming. The pre-alloy is prepared by vacuum induction melting and vacuum arc remelting techniques. Then the alloy is sprayed by SK2 facility with atomization gas nitrogen at University of Bremen in Germany. In this paper we study the density and microstructure of the spray-formed billet, especially the special morphology of γ’ phase. The results show that density is associated with different parts of the deposited billet. The relative density of the bottom part is higher (99.63%) than those in the other parts. The relative density of top part (98.91%) is lowest. After hot isostatic pressing, the relative density can be up to 100%. Uniform and fine equiaxed grains are the remarkable morphology of spray-formed alloy without prior particle boundary. The sizes of grains are in a range of about l0-40 μm and the grains at bottom part of billet are finest. The grain sizes of primary γ’ phase are in a range of about 0.6-0.8 μm, and the grain sizes of secondary γ’ phase in a range of about 0.1-0.5 μm as well as dispersed spherical tertiary γ’ particles with the sizes of 10-20 nm. The special morphology of secondary γ’ phase occurs with the splitting of γ’ particle, which is related to the low cooling rate of the depositing process. The splitting behavior reduces the total energy of γ’ particle. Total energy of γ’ particle includes elastic interaction energy, elastic strain energy and surface energy, among which the elastic strain energy is invariable. The surface energy increases with the splitting process and the elastic interaction energy reduces. The effect of elastic interaction energy on particles is the major reason why the total energy is reduced. The trend of splitting behavior is analyzed by calculating the equivalent diameter of splitting γ’ particle. It indicates that when the equivalent diameter is over 0.40 μm, there is the possibility to split. Subsequently, spray-formed FGH4095M billet is treated by hot isostatic pressing, isothermal forging and heat treatment process to obtain the FGH4095M alloy turbine disk. The research of tensile property of FGH4095M alloy turbine disk shows an excellent property either at room temperature or at high temperature for the optimized alloy. The relationship between special morphology of γ’ phase and excellent property needs further investigating.
    • 基金项目: 国家自然科学基金(批准号: 51171016)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51171016).
    [1]

    Wu K, Liu G Q, Hu B F, Zhang Y W, Tao Y, Liu J T 2010 Mater Chin. 29 23 (in Chinese) [吴凯, 刘国权, 胡本芙, 张义文, 陶宇, 刘建涛 2010 中国材料进展 29 23]

    [2]

    Zhang Y W, Liu J T 2013 Mater. Chin. 32 1 (in Chinese) [张义文, 刘建涛 2013 中国材料进展 32 1]

    [3]

    Grant P S 1995 Prog. Mater. Sci. 39 497

    [4]

    Benz M G, Sawyer T F, Carter W T, Zabala R J, Dupree P L 1994 Powder Metall. 37 213

    [5]

    Fiedler H C, Sawyer T F, Kopp R W, Leatham A G 1987 JOM 39 28

    [6]

    Hohmann M, Pleier S 2009 Acta Metall. Sin. 18 15

    [7]

    Zhang G Q, Li Z, Tian S F, Yan M G 2006 J. Aeronautical Mater. 26 258 (in Chinese) [张国庆, 李周, 田世藩, 颜鸣皋 2006 航空材料学报 26 258]

    [8]

    Xu W Y, Li Z, Zhang G Q, Yuan H, Li Z D, Yao R P, Tian S F, Xu S B 2005 The Tenth National Youth Materials Science and Technology Symposium C series Changsha, China, October, 2005 p67 (in Chinese) [许文勇, 李周, 张国庆, 袁华, 李正栋, 姚瑞平, 田世藩, 徐石斌 2005 第十届全国青年材料科学技术研讨会论文集(C辑) 中国长沙, 2005年10月, p67]

    [9]

    Kang F W 2007 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [康福伟 2007 博士论文 (哈尔滨: 哈尔滨工业大学)]

    [10]

    Li Z, Zhang G Q, Tian S F, Yan M G 2005 Mater. Sci. Forum 475 2845

    [11]

    Ge C, Zhang Y, Xu Y, Shen W P, Zhang Y C, Wu H 2012 Superalloys (Hoboken: John Wiley & Sons Ltd.) p557

    [12]

    Zhang Y 2012 Ph. D. Dissertation (Beijing: University of Science and Technology Beijing) (in Chinese) [张宇 2012 博士论文 (北京:北京科技大学)]

    [13]

    Xu Y, Ge C C, Shu Q 2013 J. Iron Steel Res. Int. 20 59

    [14]

    Guo B, Ge C C, Xu Y, Zhang Y, Sun C S 2012 Chin. J. Nonferrous Met. 22 3029 (in Chinese) [郭彪, 葛昌纯, 徐轶, 张宇, 孙传水 2012 中国有色金属学报 22 3029]

    [15]

    Zhang Y, Ge C C, Shen W P, Qiu C J 2012 Acta Phys. Sin. 61 208101 (in Chinese) [张宇, 葛昌纯, 沈卫平, 邱成杰 2012 61 208101]

    [16]

    Zhang Y, Ge C C, Guo B, Shen W P 2012 Acta Phys. Sin. 61 218102 (in Chinese) [张宇, 葛昌纯, 郭彪, 沈卫平 2012 61 218102]

    [17]

    Zhang Y, Ge C C, Shen W P, Qiu C J 2012 Acta Phys. Sin. 61 196101 (in Chinese) [张宇, 葛昌纯, 沈卫平, 邱成杰 2012 61 196101]

    [18]

    Li H Y, Song X P, Wang Y L, Chen G L 2009 Rare Metal Mater. Eng. 38 64 (in Chinese) [李红宇, 宋西平, 王艳丽, 陈国良 2009 稀有金属材料与工程 38 64]

    [19]

    Qiu Y Y 1998 J. Alloys Compd. 270 145

    [20]

    Yu X H, Zhang J H, Hu Z Q 1994 Acta Metall. Sin. 30 551 (in Chinese) [于熙泓, 张静华, 胡壮麒 1994 金属学报 30 551]

    [21]

    Hu B F, Liu G Q, Wu K, Tian G F 2012 Acta Metall. Sin. 48 257 (in Chinese) [胡本芙, 刘国权, 吴凯, 田高峰 2012 金属学报 48 257]

    [22]

    Wu K, Liu G Q, Hu B F, Zhang Y W, Tao Y, Liu J T 2012 Rare Metal Mater. Eng. 41 1267 (in Chinese) [吴凯, 刘国权, 胡本芙, 张义文, 陶宇, 刘建涛 2012 稀有金属材料与工程 41 1267]

    [23]

    Baldan A 2002 J. Mater. Sci. 37 2379

    [24]

    Doi M, Wakatsuki T, Miyazaki T 1984 Mater. Sci. Eng. 67 247

    [25]

    Miyazaki T, Imamura H, Mori H, Kozaki T 1981 J. Mater. Sci. 16 1197

    [26]

    Miyazaki T, Imamura H, Kozaki T 1982 Mater. Sci. Eng. 54 9

    [27]

    Doi M, Miyazaki T, Wakatsuki T 1985 Mater. Sci. Eng. 74 139

    [28]

    He F, Wang W X, Yang W H, Zou J W, Wang X Q, Han Y F 2000 J. Aeronautical Mater. 20 22 (in Chinese) [何峰, 汪武祥, 杨万宏, 邹金文, 王旭青, 韩雅芳 2000 航空材料学报 20 22]

  • [1]

    Wu K, Liu G Q, Hu B F, Zhang Y W, Tao Y, Liu J T 2010 Mater Chin. 29 23 (in Chinese) [吴凯, 刘国权, 胡本芙, 张义文, 陶宇, 刘建涛 2010 中国材料进展 29 23]

    [2]

    Zhang Y W, Liu J T 2013 Mater. Chin. 32 1 (in Chinese) [张义文, 刘建涛 2013 中国材料进展 32 1]

    [3]

    Grant P S 1995 Prog. Mater. Sci. 39 497

    [4]

    Benz M G, Sawyer T F, Carter W T, Zabala R J, Dupree P L 1994 Powder Metall. 37 213

    [5]

    Fiedler H C, Sawyer T F, Kopp R W, Leatham A G 1987 JOM 39 28

    [6]

    Hohmann M, Pleier S 2009 Acta Metall. Sin. 18 15

    [7]

    Zhang G Q, Li Z, Tian S F, Yan M G 2006 J. Aeronautical Mater. 26 258 (in Chinese) [张国庆, 李周, 田世藩, 颜鸣皋 2006 航空材料学报 26 258]

    [8]

    Xu W Y, Li Z, Zhang G Q, Yuan H, Li Z D, Yao R P, Tian S F, Xu S B 2005 The Tenth National Youth Materials Science and Technology Symposium C series Changsha, China, October, 2005 p67 (in Chinese) [许文勇, 李周, 张国庆, 袁华, 李正栋, 姚瑞平, 田世藩, 徐石斌 2005 第十届全国青年材料科学技术研讨会论文集(C辑) 中国长沙, 2005年10月, p67]

    [9]

    Kang F W 2007 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [康福伟 2007 博士论文 (哈尔滨: 哈尔滨工业大学)]

    [10]

    Li Z, Zhang G Q, Tian S F, Yan M G 2005 Mater. Sci. Forum 475 2845

    [11]

    Ge C, Zhang Y, Xu Y, Shen W P, Zhang Y C, Wu H 2012 Superalloys (Hoboken: John Wiley & Sons Ltd.) p557

    [12]

    Zhang Y 2012 Ph. D. Dissertation (Beijing: University of Science and Technology Beijing) (in Chinese) [张宇 2012 博士论文 (北京:北京科技大学)]

    [13]

    Xu Y, Ge C C, Shu Q 2013 J. Iron Steel Res. Int. 20 59

    [14]

    Guo B, Ge C C, Xu Y, Zhang Y, Sun C S 2012 Chin. J. Nonferrous Met. 22 3029 (in Chinese) [郭彪, 葛昌纯, 徐轶, 张宇, 孙传水 2012 中国有色金属学报 22 3029]

    [15]

    Zhang Y, Ge C C, Shen W P, Qiu C J 2012 Acta Phys. Sin. 61 208101 (in Chinese) [张宇, 葛昌纯, 沈卫平, 邱成杰 2012 61 208101]

    [16]

    Zhang Y, Ge C C, Guo B, Shen W P 2012 Acta Phys. Sin. 61 218102 (in Chinese) [张宇, 葛昌纯, 郭彪, 沈卫平 2012 61 218102]

    [17]

    Zhang Y, Ge C C, Shen W P, Qiu C J 2012 Acta Phys. Sin. 61 196101 (in Chinese) [张宇, 葛昌纯, 沈卫平, 邱成杰 2012 61 196101]

    [18]

    Li H Y, Song X P, Wang Y L, Chen G L 2009 Rare Metal Mater. Eng. 38 64 (in Chinese) [李红宇, 宋西平, 王艳丽, 陈国良 2009 稀有金属材料与工程 38 64]

    [19]

    Qiu Y Y 1998 J. Alloys Compd. 270 145

    [20]

    Yu X H, Zhang J H, Hu Z Q 1994 Acta Metall. Sin. 30 551 (in Chinese) [于熙泓, 张静华, 胡壮麒 1994 金属学报 30 551]

    [21]

    Hu B F, Liu G Q, Wu K, Tian G F 2012 Acta Metall. Sin. 48 257 (in Chinese) [胡本芙, 刘国权, 吴凯, 田高峰 2012 金属学报 48 257]

    [22]

    Wu K, Liu G Q, Hu B F, Zhang Y W, Tao Y, Liu J T 2012 Rare Metal Mater. Eng. 41 1267 (in Chinese) [吴凯, 刘国权, 胡本芙, 张义文, 陶宇, 刘建涛 2012 稀有金属材料与工程 41 1267]

    [23]

    Baldan A 2002 J. Mater. Sci. 37 2379

    [24]

    Doi M, Wakatsuki T, Miyazaki T 1984 Mater. Sci. Eng. 67 247

    [25]

    Miyazaki T, Imamura H, Mori H, Kozaki T 1981 J. Mater. Sci. 16 1197

    [26]

    Miyazaki T, Imamura H, Kozaki T 1982 Mater. Sci. Eng. 54 9

    [27]

    Doi M, Miyazaki T, Wakatsuki T 1985 Mater. Sci. Eng. 74 139

    [28]

    He F, Wang W X, Yang W H, Zou J W, Wang X Q, Han Y F 2000 J. Aeronautical Mater. 20 22 (in Chinese) [何峰, 汪武祥, 杨万宏, 邹金文, 王旭青, 韩雅芳 2000 航空材料学报 20 22]

  • [1] 刘续希, 高士森, 喇永孝, 玉栋梁, 柳文波. Zr-2.5Sn合金高温腐蚀过程的相场模拟.  , 2024, 73(14): 148201. doi: 10.7498/aps.73.20240393
    [2] 吴明宇, 弭光宝, 李培杰, 黄旭. 600 ℃高温钛合金燃烧组织演变及机理.  , 2023, 72(16): 166102. doi: 10.7498/aps.72.20230396
    [3] 吕梦甜, 李金临, 孙九栋, 王镇华, 王清, 董闯. 低密度Co-Ni-Al-Mo-Cr-Ti/Nb/Ta系列高温合金方形γ/γ′共格组织设计及其稳定性.  , 2022, 71(11): 118102. doi: 10.7498/aps.71.20212444
    [4] 张媛媛, 林鑫, 杨海欧, 李加强, 任永明. 粉末状态对激光立体成形Zr55Cu30Al10Ni5块体非晶合金晶化行为的影响.  , 2015, 64(16): 166402. doi: 10.7498/aps.64.166402
    [5] 魏雷, 林鑫, 王猛, 黄卫东. 激光立体成形中熔池凝固微观组织的元胞自动机模拟.  , 2015, 64(1): 018103. doi: 10.7498/aps.64.018103
    [6] 杜立飞, 张蓉, 邢辉, 张利民, 张洋, 刘林. 横向限制下凝固微观组织演化的相场法模拟.  , 2013, 62(10): 106401. doi: 10.7498/aps.62.106401
    [7] 杨亮, 魏承炀, 雷力明, 李臻熙, 李赛毅. 两相钛合金再结晶退火组织与织构演变的蒙特卡罗模拟.  , 2013, 62(18): 186103. doi: 10.7498/aps.62.186103
    [8] 张宪刚, 宗亚平, 吴艳. 相场再结晶储能释放模型与显微组织演变的模拟研究.  , 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [9] 鲁晓宇, 廖霜, 阮莹, 代富平. 快速凝固Ti-Cu-Fe合金的相组成与组织演变规律.  , 2012, 61(21): 216102. doi: 10.7498/aps.61.216102
    [10] 张宇, 葛昌纯, 沈卫平, 邱成杰. 喷射成型FGH4095静态再结晶组织特征.  , 2012, 61(20): 208101. doi: 10.7498/aps.61.208101
    [11] 张宇, 葛昌纯, 郭彪, 沈卫平. 喷射成形FGH4095的热变形特征.  , 2012, 61(21): 218102. doi: 10.7498/aps.61.218102
    [12] 谌岩, 刘琳, 刘建华, 张瑞军. 高压处理对Cu75.15Al24.85合金组织与电阻率的影响.  , 2012, 61(17): 176103. doi: 10.7498/aps.61.176103
    [13] 张宇, 葛昌纯, 沈卫平, 邱成杰. 氮气喷射成形FGH4095的组织特征.  , 2012, 61(19): 196101. doi: 10.7498/aps.61.196101
    [14] 王刚, 徐东生, 杨锐. Ti-6Al-4V合金中片层组织形成的相场模拟.  , 2009, 58(13): 343-S348. doi: 10.7498/aps.58.343
    [15] 刘贵立. Mg-Zr合金微观组织电子结构研究.  , 2008, 57(2): 1043-1047. doi: 10.7498/aps.57.1043
    [16] 张玉祥, 王锦程, 杨根仓, 周尧和. 相场法模拟弹性场对沉淀相变组织演化及相平衡成分的影响.  , 2006, 55(5): 2433-2438. doi: 10.7498/aps.55.2433
    [17] 包卫平, 许光明, 班春燕, 崔建忠. 静磁场对镁合金凝固组织的影响.  , 2004, 53(6): 2024-2028. doi: 10.7498/aps.53.2024
    [18] 徐锦锋, 魏炳波. 急冷快速凝固过程中液相流动与组织形成的相关规律.  , 2004, 53(6): 1909-1915. doi: 10.7498/aps.53.1909
    [19] 张鹏, 杜云慧, 曾大本. 电磁-机械复合场对合金凝固组织影响的研究.  , 2002, 51(3): 696-699. doi: 10.7498/aps.51.696
    [20] 王文魁, 何寿安, 岩崎博, 庄野安彦, 后藤恒昭. 高温高压下非晶Co80B20合金的相稳定性.  , 1984, 33(7): 914-920. doi: 10.7498/aps.33.914
计量
  • 文章访问数:  6536
  • PDF下载量:  436
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-26
  • 修回日期:  2014-12-03
  • 刊出日期:  2015-05-05

/

返回文章
返回
Baidu
map