搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于指数再生窗Gabor框架的窄脉冲欠Nyquist采样与重构

陈鹏 孟晨 孙连峰 王成 杨森

引用本文:
Citation:

基于指数再生窗Gabor框架的窄脉冲欠Nyquist采样与重构

陈鹏, 孟晨, 孙连峰, 王成, 杨森

Sub-Nyquist sampling and reconstruction of short pulses based on Gabor frames with exponential reproducing windows

Chen Peng, Meng Chen, Sun Lian-Feng, Wang Cheng, Yang Sen
PDF
导出引用
  • 基于Gabor框架的窄脉冲信号采样及重构效果已经得到验证, 其解决了有限新息率(finite rate of innovation, FRI)采样方法无法在波形未知的情况下重构出脉冲波形的问题.但是目前的Gabor框架采样系统的窗函数构造复杂且难以物理实现.本文将指数再生窗函数引入Gabor框架, 将窗函数序列调制部分简化为一阶巴特沃斯模拟滤波器, 构造了Gabor系数重构所需要的压缩感知(compressed sensing, CS)测量矩阵.为了使得测量矩阵满足信号精确重构所需的约束等距特性(restricted isometry property, RIP), 根据高阶指数样条函数能量聚集特性, 选择了最优的窗函数支撑宽度, 推导了信号重构所需的约束条件, 还对其鲁棒性进行了分析.本文通过仿真实验对上述分析进行了有效验证, 该系统可应用于测试仪器、状态监测、雷达及通信领域等多种背景下的窄脉冲信号采样与重构.
    Sampling and reconstruction of short pulses based on Gabor frames have been proved to be effective, which overcome the difficulties that finite rate of innovation (FRI) sampling is unable to reconstruct the pulse streams without the prior information of waveforms. However, the windows sequences of sampling scheme based on Gabor frames proposed at present show complicated structure and are hard to realize physically. The exponential reproducing windows are then introduced in this paper and the windows sequences can be simplified as a first-order analog Butterworth filter. At the same time, the compressed sensing (CS) measurement matrix is constructed for the recovery of Gabor coefficients. In order to satisfy the restricted isometry property (RIP) of the measurement matrices for perfect signal reconstruction, we select appropriate windows for support according to the energy accumulation property. A restricted condition is deduced for perfecting the signal reconstruction and the system robustness is analyzed. By numerical simulations the above analysis is verified. This novel scheme can be used to implement short pulses sampling and reconstruction in the field of instrumentation, condition monitoring, radar and the communication.
    • 基金项目: 国家自然科学基金(批准号: 61372039)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372039).
    [1]

    Fang S, Wu W C, Ying K, Guo H 2013 Acta Phys. Sin. 62 048702 (in Chinese) [方晟, 吴文川, 应葵, 郭华 2013 62 048702]

    [2]

    Ning F L, He B J, Wei J 2013 Acta Phys. Sin. 62 174212 (in Chinese) [宁方立, 何碧静, 韦娟 2013 62 174212]

    [3]

    Zhang J C, Fu N, Qiao L Y, Peng X Y 2014 Acta Phys. Sin. 63 030701 (in Chinese) [张京超, 付宁, 乔立岩, 彭喜元 2014 63 030701]

    [4]

    Omer Bar-Ilan, Eldar Y C 2014 IEEE Trans. Signal Processing 62 1796

    [5]

    Herman M A, Strohmer T 2009 IEEE Trans. Signal Processing 57 2275

    [6]

    Razzaque M A, Bleakley C, Dobson S 2013 ACM Transactions on Sensor Networks 10 5

    [7]

    Mishali M, Eldar Y C, Dounaevsky O 2011 IET circuits, devices & systems 5 8

    [8]

    Tropp J A, Laska J N, Duarte M F 2010 IEEE Trans. Inf. Theory 56 520

    [9]

    Michaeli T, Eldar Y C 2012 Signal Processing, IEEE Transactions on. 60 1121

    [10]

    Urigiien J A, Eldar Y C, Dragotti P L 2012 Compressed Sensing: Theory and Applications (Cambridge, U.K.: Cambridge Univ. Press) p148

    [11]

    Matusiak E 2012 IEEE Ttransactions on Signal Processing 60 1134

    [12]

    Kloos T, Stöckler J 2013 Journal of Approximation Theory 184 209

    [13]

    Jeffrey D B, Michael C, David H, Yirong J 2013 IEEE Trans. Signal Processing 62 1694

    [14]

    Xie Z P, Chen S C 2013 Journal of Computer Research and Development 49 580 (in Chinese) [谢志鹏, 陈松灿 2013 计算机研究与发展 49 580]

    [15]

    Feichtinger H G 1981 Monatshefte fr Mathematik 92 269

    [16]

    Mishali M, Eldar Y C 2009 Information Theory Workshop 2009.IEEE

    [17]

    Daubenchies I 1992 Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics) p97

    [18]

    Unser M, Blu T 2005 IEEE Trans. Signal Processing 53 1425

    [19]

    Qu C W, He Y, Liu W H, Li N 2009 Frames Theory and Applications (Beijing: National Defense Industy Press) p152 (in Chinese) [曲长文, 何友, 刘卫华, 李楠 2009 框架理论及应用(北京: 国防工业出版社) 第152页]

    [20]

    Tropp J A, Laska J N, Duarte M F, Romberg J K, Baraniuk R G 2010 IEEE Trans Inf. Theory 56 520

    [21]

    Xu Z Q 2012 Scientia Sinica (Mathematica) 42 865 (in Chinese) [许志强 中国科学:数学 42 865]

    [22]

    Haupt J, Nowak R 2010 Proc. 44th Annual Conf. on Information Sciences and Systems Princeton, NJ, March 2010

    [23]

    Xu G W, Xu Z Q 2013 arXiv:1301.0373

    [24]

    Rudelson M, Vershynin R 2008 Communications on Pure and Applied Mathematics 61 1025

  • [1]

    Fang S, Wu W C, Ying K, Guo H 2013 Acta Phys. Sin. 62 048702 (in Chinese) [方晟, 吴文川, 应葵, 郭华 2013 62 048702]

    [2]

    Ning F L, He B J, Wei J 2013 Acta Phys. Sin. 62 174212 (in Chinese) [宁方立, 何碧静, 韦娟 2013 62 174212]

    [3]

    Zhang J C, Fu N, Qiao L Y, Peng X Y 2014 Acta Phys. Sin. 63 030701 (in Chinese) [张京超, 付宁, 乔立岩, 彭喜元 2014 63 030701]

    [4]

    Omer Bar-Ilan, Eldar Y C 2014 IEEE Trans. Signal Processing 62 1796

    [5]

    Herman M A, Strohmer T 2009 IEEE Trans. Signal Processing 57 2275

    [6]

    Razzaque M A, Bleakley C, Dobson S 2013 ACM Transactions on Sensor Networks 10 5

    [7]

    Mishali M, Eldar Y C, Dounaevsky O 2011 IET circuits, devices & systems 5 8

    [8]

    Tropp J A, Laska J N, Duarte M F 2010 IEEE Trans. Inf. Theory 56 520

    [9]

    Michaeli T, Eldar Y C 2012 Signal Processing, IEEE Transactions on. 60 1121

    [10]

    Urigiien J A, Eldar Y C, Dragotti P L 2012 Compressed Sensing: Theory and Applications (Cambridge, U.K.: Cambridge Univ. Press) p148

    [11]

    Matusiak E 2012 IEEE Ttransactions on Signal Processing 60 1134

    [12]

    Kloos T, Stöckler J 2013 Journal of Approximation Theory 184 209

    [13]

    Jeffrey D B, Michael C, David H, Yirong J 2013 IEEE Trans. Signal Processing 62 1694

    [14]

    Xie Z P, Chen S C 2013 Journal of Computer Research and Development 49 580 (in Chinese) [谢志鹏, 陈松灿 2013 计算机研究与发展 49 580]

    [15]

    Feichtinger H G 1981 Monatshefte fr Mathematik 92 269

    [16]

    Mishali M, Eldar Y C 2009 Information Theory Workshop 2009.IEEE

    [17]

    Daubenchies I 1992 Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics) p97

    [18]

    Unser M, Blu T 2005 IEEE Trans. Signal Processing 53 1425

    [19]

    Qu C W, He Y, Liu W H, Li N 2009 Frames Theory and Applications (Beijing: National Defense Industy Press) p152 (in Chinese) [曲长文, 何友, 刘卫华, 李楠 2009 框架理论及应用(北京: 国防工业出版社) 第152页]

    [20]

    Tropp J A, Laska J N, Duarte M F, Romberg J K, Baraniuk R G 2010 IEEE Trans Inf. Theory 56 520

    [21]

    Xu Z Q 2012 Scientia Sinica (Mathematica) 42 865 (in Chinese) [许志强 中国科学:数学 42 865]

    [22]

    Haupt J, Nowak R 2010 Proc. 44th Annual Conf. on Information Sciences and Systems Princeton, NJ, March 2010

    [23]

    Xu G W, Xu Z Q 2013 arXiv:1301.0373

    [24]

    Rudelson M, Vershynin R 2008 Communications on Pure and Applied Mathematics 61 1025

  • [1] 王攀, 王仲根, 孙玉发, 聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性.  , 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法.  , 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [3] 董磊, 卢振武, 刘欣悦, 李正炜. 三种降采样成像策略的性能优化以及与传统傅里叶望远镜的比较.  , 2019, 68(7): 074203. doi: 10.7498/aps.68.20181801
    [4] 康志伟, 吴春艳, 刘劲, 马辛, 桂明臻. 基于两级压缩感知的脉冲星时延估计方法.  , 2018, 67(9): 099701. doi: 10.7498/aps.67.20172100
    [5] 冷雪冬, 王大鸣, 巴斌, 王建辉. 基于渐进添边的准循环压缩感知时延估计算法.  , 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [6] 黄翔东, 刘明卓, 杨琳, 刘琨, 刘铁根. 单次空时域并行欠采样下的频率和到达角联合估计.  , 2017, 66(18): 188401. doi: 10.7498/aps.66.188401
    [7] 李少东, 陈永彬, 刘润华, 马晓岩. 基于压缩感知的窄带高速自旋目标超分辨成像物理机理分析.  , 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [8] 李慧, 赵琳, 李亮. 基于贝叶斯压缩感知的周跳探测与修复方法.  , 2016, 65(24): 249101. doi: 10.7498/aps.65.249101
    [9] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法.  , 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [10] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像.  , 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [11] 李广明, 吕善翔. 混沌信号的压缩感知去噪.  , 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [12] 康荣宗, 田鹏武, 于宏毅. 一种基于选择性测量的自适应压缩感知方法.  , 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [13] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析.  , 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [14] 张新鹏, 胡茑庆, 程哲, 钟华. 基于压缩感知的振动数据修复方法.  , 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [15] 王哲, 王秉中. 压缩感知理论在矩量法中的应用.  , 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [16] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像.  , 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [17] 黄翔东, 丁道贤, 南楠, 王兆华. 基于中国余数定理的欠采样下余弦信号的频率估计.  , 2014, 63(19): 198403. doi: 10.7498/aps.63.198403
    [18] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究.  , 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [19] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法.  , 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [20] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究.  , 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
计量
  • 文章访问数:  6411
  • PDF下载量:  248
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-19
  • 修回日期:  2014-10-26
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map