-
高超声速流动是高复杂性的可压缩黏性流动, 其中存在激波、剪切层、激波/激波干扰、激波/边界层干扰、旋涡与分离流动等复杂流场结构. 对其进行准确模拟需要使用低耗散、强鲁棒性的激波捕捉方法. 本文基于一类新型的通量项分裂方法, 提出了一种耗散低且鲁棒性好的激波捕捉格式K-CUSP-X. 对该格式的耗散性和激波稳定性进行了详细的理论分析, 得到了格式激波稳定的数值条件. 推论认为, 迎风格式激波稳定的充分条件为速度扰动量具有衰减性, 数值实验验证了该推论. 研究表明, 该格式与Toro提出的通量分裂格式K-CUSP-T相比, 在保证精确捕捉接触间断的同时, 又具有更好的稳定性, 在激波处不会产生“红玉”现象.The high speed flow problems usually involve complex flow phenomena, such as strong shock waves, shock-shock interactions, and shear layers. Prediction of these problems requires robust, efficient and accurate numerical methods. A robust flux splitting method capable of capturing crisp shock profile and exact contact surface is presented. Here, the flux vector of the Euler equation is split into convective and pressure parts according to the Toro's formulation. The accuracy of the numerical method at the contact discontinuity is examined first. Sufficient conditions of shock stability for this new method are obtained through a linear perturbation analysis. Several carefully chosen test problems are numerically investigated, and the numerical results demonstrate the accuracy and robustness of the proposed scheme.
-
Keywords:
- hypersonic /
- shock capturing /
- contact discontinuity /
- shock instability
[1] Tchuen G, Fogang F, Burtschell Y, Woafo P 2014 Comput. Phys. Commun. 185 479
[2] Quan P C, Yi S H, Wu Y, Zhu Y Z, Chen Z 2014 Acta Phys. Sin. 63 084703 (in Chinese) [全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2014 63 084703]
[3] Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702 (in Chinese) [武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 62 184702]
[4] Zingg D W, Rango S D, Nemec M, Pulliam T H 2000 J. Comput. Phys. 160 683
[5] Fu Z, Liu K X, Luo N 2014 Chin. Phys. B 23 020202
[6] Park S H, Kwon J H 2003 J. Comput. Phys. 188 524
[7] Huang K B, Wu H, Yu H, Yan D 2011 Int. J. Numer. Methods Fluids 65 1026
[8] Pandolfi M, D' Ambrosio D 2001 J. Comput. Phys. 166 271
[9] Toro E F, Vázquez-Cendón M E 2012 Comput. Fluids 70 1
[10] Liou M S, Steffen C J 1993 J. Comput. Phys. 107 23
[11] Liou M S 1996 J. Comput. Phys. 129 364
[12] Liou M S 2006 J. Comput. Phys. 214 137
[13] Zha G C, Shen Y Q, Wang B Y 2011 Comput. Fluids 48 214
[14] Zha G C 2005 AIAA J. 43 1137
[15] Zha G C, Hu Z 2004 AIAA J. 42 205
[16] Zha G C, Bilgen E 1993 Int. J. Numer. Methods Fluids 17 115
[17] Mandal J C, Panwar V 2012 Comput. Fluids 63 148
[18] Sha S, Chen Z H, Xue D W 2013 Acta Phys. Sin. 62 144701 (in Chinese) [沙莎, 陈志华, 薛大文 2013 62 144701]
[19] Kitamura K, Shima E, Roe P L 2012 AIAA J. 50 2655
[20] Liou M S 2000 J. Comput. Phys. 160 623
[21] Xu K, Li Z W 2001 Int. J. Numer. Methods Fluids 37 1
[22] Quirk J J 1994 Int. J. Numer. Methods Fluids 18 555
[23] Henderson S J, Menart J A 2007 39th AIAA Thermophysics Conference Miami, America June 25-28 2007 p3904
-
[1] Tchuen G, Fogang F, Burtschell Y, Woafo P 2014 Comput. Phys. Commun. 185 479
[2] Quan P C, Yi S H, Wu Y, Zhu Y Z, Chen Z 2014 Acta Phys. Sin. 63 084703 (in Chinese) [全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2014 63 084703]
[3] Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702 (in Chinese) [武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 62 184702]
[4] Zingg D W, Rango S D, Nemec M, Pulliam T H 2000 J. Comput. Phys. 160 683
[5] Fu Z, Liu K X, Luo N 2014 Chin. Phys. B 23 020202
[6] Park S H, Kwon J H 2003 J. Comput. Phys. 188 524
[7] Huang K B, Wu H, Yu H, Yan D 2011 Int. J. Numer. Methods Fluids 65 1026
[8] Pandolfi M, D' Ambrosio D 2001 J. Comput. Phys. 166 271
[9] Toro E F, Vázquez-Cendón M E 2012 Comput. Fluids 70 1
[10] Liou M S, Steffen C J 1993 J. Comput. Phys. 107 23
[11] Liou M S 1996 J. Comput. Phys. 129 364
[12] Liou M S 2006 J. Comput. Phys. 214 137
[13] Zha G C, Shen Y Q, Wang B Y 2011 Comput. Fluids 48 214
[14] Zha G C 2005 AIAA J. 43 1137
[15] Zha G C, Hu Z 2004 AIAA J. 42 205
[16] Zha G C, Bilgen E 1993 Int. J. Numer. Methods Fluids 17 115
[17] Mandal J C, Panwar V 2012 Comput. Fluids 63 148
[18] Sha S, Chen Z H, Xue D W 2013 Acta Phys. Sin. 62 144701 (in Chinese) [沙莎, 陈志华, 薛大文 2013 62 144701]
[19] Kitamura K, Shima E, Roe P L 2012 AIAA J. 50 2655
[20] Liou M S 2000 J. Comput. Phys. 160 623
[21] Xu K, Li Z W 2001 Int. J. Numer. Methods Fluids 37 1
[22] Quirk J J 1994 Int. J. Numer. Methods Fluids 18 555
[23] Henderson S J, Menart J A 2007 39th AIAA Thermophysics Conference Miami, America June 25-28 2007 p3904
计量
- 文章访问数: 7619
- PDF下载量: 487
- 被引次数: 0