搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壁面渗透气膜工质对圆锥高超声速边界层稳定性的影响

胡玉发 易仕和 刘小林 徐席旺 张震 张臻

引用本文:
Citation:

壁面渗透气膜工质对圆锥高超声速边界层稳定性的影响

胡玉发, 易仕和, 刘小林, 徐席旺, 张震, 张臻

Effect of wall-seeping gas film under different working media on stability of conical hypersonic boundary layer

Hu Yu-Fa, Yi Shi-He, Liu Xiao-Lin, Xu Xi-Wang, Zhang Zhen, Zhang Zhen
PDF
HTML
导出引用
  • 壁面渗透气膜是一种有应用前景的高超声速边界层转捩控制和减阻降热方式. 在马赫数6高超声速静音风洞内, 使用纳米粒子示踪的平面激光散射(nano-tracer planar laser scattering, NPLS)技术和高频脉动压力测试技术, 研究了壁面渗透气膜工质(氦气、空气和二氧化碳)在相同体积流量条件下对圆锥高超声速边界层的影响. 实验结果表明, 壁面渗透气膜显著增厚了边界层, 最厚位置都出现在渗透区域下游边界处, 且氦气气膜时边界层最薄, 二氧化碳气膜时最厚. 通常, 空气气膜和二氧化碳气膜使得边界层内提前出现规则的绳状交织的第二模态波结构, 但体积流量较大条件下二氧化碳气膜时, 扰动波结构类似剪切层不稳定性. 氦气气膜时, 扰动波结构不是第二模态波, 其形状不规则, 随时空变化较大, 壁面脉动压力功率谱密度没有出现峰值频率. 空气气膜时第二模态波波长大约是边界层厚度的2—3倍, 而二氧化碳气膜时增大到3倍以上. 二氧化碳气膜时第二模态波峰值频率最小, 频带范围最窄, 波长最长, 幅值最大, 扰动波传播距离较远且非线性相互作用较强.
    Wall-seeping gas film (WSGF) is a promising method of controlling hypersonic boundary layer transition and reducing friction drag and heat transfer. Experiments are conducted in a Mach 6 hypersonic quiet wind tunnel by using nano-tracer planar laser scattering (NPLS) and high-frequency fluctuating pressure measuring technique. This work investigates the effects of wall-seeping helium, air, and carbon dioxide gas films under identical volume flow rate condition on conical boundary layer thickness, disturbance wave structure, wavelength, frequency, amplitude, and nonlinear interaction. The experimental results reveal that the WSGF significantly thickens the hypersonic boundary layer, with the thickest position appearing at the downstream boundary of the seeping zone. The boundary layer thickness is thinnest for helium gas film but thickest for carbon dioxide gas film. Generally, air gas film and carbon dioxide gas film induce the regular, rope-like, and interlaced second-mode waves to appear in advance in the boundary layer. However, under a higher volume flow rate for carbon dioxide gas film, the disturbance wave structure resembles interface fluctuations, with a characteristic wavelength of approximately 18 mm and a peak frequency as low as about 35 kHz, but no the rope-like interlaced characteristic. At this time, the influence of shear layer instability becomes significant. The disturbance waves do not exhibit second-mode wave characteristics for wall-seeping helium gas film, whose shape is irregular and undergoes deformation with time and space. Additionally, the power spectral density of wall fluctuating pressure exhibits insignificant variation with volume flow rate and flow direction, which is similar to the characteristic of power spectral density in the laminar boundary layer and has no peak frequency. The wavelength of second-mode waves is about 2-3 times the boundary layer thickness for air gas film, and increases to more than 3 times for carbon dioxide gas film. The application of carbon dioxide gas film results in smaller peak frequency and bandwidth of disturbance wave, larger characteristic wavelength and amplitude, longer propagation distance, and stronger nonlinear interaction than the application of air gas film. In the future, attention should be paid to understanding disturbance wave characteristics in the boundary layer for the helium gas film and shear layer instability under larger volume flow rates.
      通信作者: 易仕和, yishihe@nudt.edu.cn
      Corresponding author: Yi Shi-He, yishihe@nudt.edu.cn
    [1]

    Jackson T A, Eklund D R, Fink A J 2004 J. Mater. Sci. 39 5905Google Scholar

    [2]

    Meritt R J, Schetz J A, Marineau E C, Lewis D R, Daniel D T 2017 J. Spacecr. Rockets 54 871Google Scholar

    [3]

    Ifti H S, Hermann T, McGilvray M, Merrifield J 2022 J. Spacecr. Rockets 59 1726Google Scholar

    [4]

    Saikia B, Brehm C 2023 AIAA Aviation 2023 Forum San Diego, CA, USA, June 12–16, 2023 p3673

    [5]

    Stalmach Jr. C J, Bertin J J, Pope T C, McCloskey M H 1971 A Study of Boundary Layer Transition on Outgassing Cones in Hypersonic Flow (NASA Contractor Report) NASA-CR-1908

    [6]

    Ghaffari S, Marxen O, Iaccarino G, Shaqfeh E S G 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4–7, 2010 p706

    [7]

    Pappas C C, Okuno A F 1964 Heat-transfer Measurement for Binary Gas Laminar Boundary Layers with High Rates of Injection (NASA Technical Note) NASA-TN-D-2473

    [8]

    Liu X, Zhao R, Wen C, Yuan W 2024 Acta Mech. 235 1109Google Scholar

    [9]

    Starkenberg J, Cresci R J 1976 AIAA J. 14 461Google Scholar

    [10]

    Marvin J G, Akin C M 1970 AIAA J. 8 857Google Scholar

    [11]

    Bertin J J, McCloskey M H, Stalmach Jr. C J, Wright R L 1972 10th AIAA Aerospace Sciences Meeting San Diego, CA, USA, January 17–19, 1972 p183

    [12]

    Scott C J, Anderson G E 1958 J. Aerosp. Sci. 25 791Google Scholar

    [13]

    Schneider S P 2010 J. Spacecr. Rockets 47 225Google Scholar

    [14]

    Jewell J S, Leyva I A, Parziale N J, Shepherd J E 2011 28th International Symposium on Shock Waves Berlin, Heidelberg, July 17–22, 2011 p735

    [15]

    Fujii K, Hornung H G 2003 AIAA J. 41 1282Google Scholar

    [16]

    Miró Miró F, Dehairs P, Pinna F, Gkolia M, Masutti D, Regert T, Chazot O 2019 AIAA J. 57 1567Google Scholar

    [17]

    Schmidt B E, Shepherd J E 2019 AIAA J. 57 5230Google Scholar

    [18]

    Camillo G P, Wagner A, Dittert C, Benjamin L, Wartemann V, Neumann J, Hink R 2020 Exp. Fluids 61 162Google Scholar

    [19]

    Kerth P, Wylie S, Ravichandran R, McGilvray M 2022 AIAA Aviation 2022 Forum Chicago, IL, June 27–July 1, 2022 p3856

    [20]

    Liu Y Q, Jiang P X, Jin S S, Sun J G 2010 Int. J. Heat Mass Transfer 53 5364Google Scholar

    [21]

    Ifti H S, Hermann T, McGilvray M 2023 AIAA J. 61 3541Google Scholar

    [22]

    李瑾, 苏伟, 黄章峰, 刘文伶 2020 航空动力学报 35 280Google Scholar

    Li J, Su W, Huang Z F, Liu W L 2020 J. Aerosp. Power 35 280Google Scholar

    [23]

    Beckwith I E 1975 AIAA J. 13 300Google Scholar

    [24]

    易仕和, 刘小林, 牛海波, 陆小革, 何霖 2020 空气动力学学报 38 137Google Scholar

    Yi S H, Liu X L, Niu H B, Lu X G, He L 2020 Acta Aerodyn. Sin. 38 137Google Scholar

    [25]

    Liu X L, Yi S H, Niu H B, He L 2020 Exp. Therm. Fluid Sci. 118 110143Google Scholar

    [26]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China Ser. E: Technol. Sci. 52 3640Google Scholar

    [27]

    冈敦殿, 易仕和, 米琦, 陆小革 2022 气体物理 7 33Google Scholar

    Gang D D, Yi S H, Mi Q, Lu X G 2022 Phys. Gases 7 33Google Scholar

    [28]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China Ser. G: Phys. , Mech. Astron. 52 2001Google Scholar

    [29]

    全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2014 63 084703Google Scholar

    Quan P G, Yi S H, Wu Y, Zhu Y Z, Chen Z 2014 Acta Phys. Sin. 63 084703Google Scholar

    [30]

    Xu X W, Yi S H, Zhang F, Zhang B, Liu X L 2021 AIAA J. 59 439Google Scholar

    [31]

    朱杨柱, 易仕和, 孔小平, 何霖 2015 64 064701Google Scholar

    Zhu Y Z, Yi S H, Kong X P, He L 2015 Acta Phys. Sin. 64 064701Google Scholar

    [32]

    Ding H L, Yi S H, Ouyang T C, Zhao Y X 2020 Meas. Sci. Technol. 31 085302Google Scholar

    [33]

    何霖, 易仕和, 陆小革 2017 66 024701Google Scholar

    He L, Yi S H, Lu X G 2017 Acta Phys. Sin. 66 024701Google Scholar

    [34]

    Yi S H, Tian L F, Zhao Y X, He L, Chen Z 2010 Chin. Sci. Bull. 55 3545Google Scholar

    [35]

    Ifti H S, Hermann T, McGilvray M, Larrimbe L, Hedgecock R, Vandeperre L 2022 AIAA J. 60 3286Google Scholar

    [36]

    1st Ed.) (Beijing: China Machine Press) [赵学端, 廖其奠 1983 黏性流体力学 (第一版) (北京: 机械工业出版社]

    Zhao X D, Liao Q D 1983 Viscous Fluid Dynamics

    [37]

    陈久芬, 徐洋, 许晓斌, 邹琼芬, 凌岗, 张毅锋 2023 实验流体力学 37 51Google Scholar

    Chen J F, Xu Y, Xu X B, Zou Q F, Ling G, Zhang Y F 2023 J. Experim. Fluid Mech. 37 51Google Scholar

    [38]

    刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海 2018 67 174701Google Scholar

    Liu X L, Yi S H, Niu H B, Lu X G, Zhao X H 2018 Acta Phys. Sin. 67 174701Google Scholar

    [39]

    Zhang B, Yi S H, Niu H B, Liu X L, Lu X G, He L 2023 Exp. Therm. Fluid Sci. 141 110786Google Scholar

    [40]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 024704Google Scholar

    [41]

    Kennedy R E, Laurence S J, Smith M S, Marineau E C 2017 55th AIAA Aerospace Sciences Meeting Grapevine, Texas, January 9–13, 2017 p1683

    [42]

    Zhang C H, Lee C B 2017 J. Visualization 20 7Google Scholar

    [43]

    Schmidt B E, Bitter N P, Hornung H G, Shepherd J E 2016 AIAA J. 54 161Google Scholar

    [44]

    Mack L M 1984 Boundary-layer Linear Stability Theory (AGARD Spec. Course on Stability and Transition of Laminar Flow

    [45]

    Grossir G, Pinna F, Bonucci G, Regert T, Rambaud P, Chazot O 2014 7th AIAA Theoretical Fluid Mechanics Conference Atlanta, GA, June 16–20, 2014 p2779

    [46]

    Stetson K F, Kimmel R L 1992 30th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, January 6–9, 1992 p737

    [47]

    Pagella A, Rist U, Wagner S 2002 Phys. Fluids 14 2088Google Scholar

    [48]

    Hu Y F, Yi S H, Liu X L, Xu X W, Zhang B 2024 Aerosp. Sci. Technol. 146 108951Google Scholar

  • 图 1  高超声速静音风洞

    Fig. 1.  Hypersonic quiet wind tunnel.

    图 2  圆锥模型和测试系统示意图

    Fig. 2.  Schematic diagram of cone model and measurement system.

    图 3  NPLS技术系统组成

    Fig. 3.  System configuration of NPLS technique.

    图 4  壁面渗透气膜对边界层的影响示意图

    Fig. 4.  Schematic diagram of the effect of WSGF on the boundary layer.

    图 5  无壁面渗透气膜时高超声速边界层NPLS图像

    Fig. 5.  NPLS image of hypersonic boundary layer without WSGF.

    图 6  无壁面渗透气膜时壁面脉动压力功率谱密度

    Fig. 6.  PSD of wall fluctuating pressure without WSGF.

    图 7  多幅NPLS图像叠加的平均流场 (a)无壁面渗透气膜情况; (b) $\dot Q$= 20 SLPM时壁面渗透空气气膜情况

    Fig. 7.  Average flow field obtained by superposing multiple NPLS images: (a) Without WSGF; (b) wall-seeping air gas film at $\dot Q$ = 20 SLPM.

    图 8  边界层厚度沿流向的变化 (a) $ \dot Q $= 20 SLPM; (b) $ \dot Q $= 40 SLPM; (c) $ \dot Q $= 60 SLPM

    Fig. 8.  Boundary layer thickness along streamwise: (a) $ \dot Q $= 20 SLPM; (b) $ \dot Q $= 40 SLPM; (c) $ \dot Q $= 60 SLPM.

    图 9  $ \dot Q $ = 20 SLPM时边界层瞬态流场NPLS图像 (a)壁面渗透氦气气膜; (b)壁面渗透空气气膜; (c)壁面渗透二氧化碳气膜

    Fig. 9.  NPLS images of transient hypersonic boundary layer at $ \dot Q $ = 20 SLPM: (a) Wall-seeping helium gas film; (b) wall-seeping air gas film; (c) wall-seeping carbon dioxide gas film.

    图 10  $ \dot Q $ = 40 SLPM时边界层瞬态流场NPLS图像 (a)壁面渗透氦气气膜; (b)壁面渗透空气气膜; (c)壁面渗透二氧化碳气膜

    Fig. 10.  NPLS images of transient hypersonic boundary layer at $ \dot Q $ = 40 SLPM: (a) Wall-seeping helium gas film; (b) wall-seeping air gas film; (c) wall-seeping carbon dioxide gas film.

    图 11  $ \dot Q $ = 60 SLPM时边界层瞬态流场NPLS图像 (a)壁面渗透氦气气膜; (b)壁面渗透空气气膜; (c)壁面渗透二氧化碳气膜

    Fig. 11.  NPLS images of transient hypersonic boundary layer at $ \dot Q $ = 60 SLPM: (a) Wall-seeping helium gas film; (b) wall-seeping air gas film; (c) wall-seeping carbon dioxide gas film.

    图 12  x = 420 mm处扰动波波长与边界层厚度

    Fig. 12.  Disturbance wave wavelength and boundary layer thickness at x = 420 mm.

    图 13  壁面渗透气膜时壁面脉动压力功率谱密度 (a) 氦气, 20 SLPM; (b) 空气, 20 SLPM; (c) 二氧化碳, 20 SLPM; (d) 氦气, 40 SLPM; (e) 空气, 40 SLPM; (f) 二氧化碳, 40 SLPM; (g) 氦气, 60 SLPM; (h) 空气, 60 SLPM; (i) 二氧化碳, 60 SLPM

    Fig. 13.  PSD of wall fluctuating pressure with WSGF: (a) Helium, 20 SLPM; (b) air, 20 SLPM; (c) carbon dioxide, 20 SLPM; (d) helium, 40 SLPM; (e) air, 40 SLPM; (f) carbon dioxide, 40 SLPM; (g) helium, 60 SLPM; (h) air, 60 SLPM; (i) carbon dioxide, 60 SLPM.

    图 14  壁面渗透气膜时x = 420 mm处壁面脉动压力双相干谱 (a)—(c)分别是体积流量20, 40, 60 SLPM条件下壁面渗透空气气膜; (d)—(f)分别是体积流量20, 40, 60 SLPM条件下壁面渗透二氧化碳气膜

    Fig. 14.  Bicoherence spectrum of wall fluctuating pressure at x = 420 mm with WSGF: (a)–(c) Wall-seeping air gas film at $ \dot Q $ = 20, 40, and 60 SLPM, respectively; (d)–(f) wall-seeping carbon dioxide gas film at $ \dot{Q} $ = 20, 40, and 60 SLPM, respectively.

    表 1  壁面渗透气膜的渗透比

    Table 1.  Seeping ratio of WSGF.

    体积流量$\dot Q/{\text{ SLPM}}$ 工质 渗透比F/%
    20 氦气 0.020
    空气 0.142
    二氧化碳 0.217
    40 氦气 0.039
    空气 0.285
    二氧化碳 0.435
    60 氦气 0.059
    空气 0.429
    二氧化碳 0.655
    下载: 导出CSV

    表 2  三种工质的物性参数

    Table 2.  Physical properties of three working media.

    工质 $\rho /({10^{ - 3}}~{\text{kg}} {\cdot} {{\text{m}}^{ - 3}})$ $\mu /({10^{ - 5}}~{\text{Pa}} {\cdot} {\text{s}})$ $a/({\text{m}} {\cdot} {{\text{s}}^{ - 1}})$
    氦气 0.72 1.98 1016
    空气 5.25 1.85 346
    二氧化碳 7.97 1.51 269
    下载: 导出CSV

    表 3  x = 420 mm处扰动波波长与当地边界层厚度的比值

    Table 3.  Ratio of disturbance wave wavelength to local boundary layer thickness at x = 420 mm.

    体积流量$\dot Q/{\text{ SLPM}}$工质波长与厚度的比值
    20氦气4.8±0.6
    空气2.2±0.2
    二氧化碳3.1±0.2
    40氦气3.6±0.5
    空气2.4±0.2
    二氧化碳3.6±0.2
    60氦气2.3±0.4
    空气2.6±0.2
    二氧化碳3.4±0.3
    下载: 导出CSV

    表 4  x = 420 mm处功率谱密度峰值频率(括号内为功率)

    Table 4.  Peak frequencies of PSD at x = 420 mm (corresponding PSD value in brackets).

    体积流量$\dot Q/{\text{ SLPM}}$工质基波频率f0/kHz二次谐波频率2f0/kHz
    20空气101(55)
    二氧化碳80(83)
    40空气72(145)144(14)
    二氧化碳47(883)96(33)
    60空气58(583)117(31)
    二氧化碳36(2435)73(53)
    下载: 导出CSV

    表 5  x = 460 mm处功率谱密度峰值频率(括号内为功率)

    Table 5.  Peak frequencies of PSD at x = 460 mm (corresponding PSD value in brackets).

    体积流量$\dot Q/{\text{ SLPM}}$ 工质 第1峰值频率f1/kHz 第2峰值频率f2/kHz
    20 空气 111 (20)
    二氧化碳 74 (19) 96 (21)
    40 空气 66 (22) 85 (17)
    二氧化碳 44 (54) 61 (49)
    60 空气 54 (40) 69 (40)
    二氧化碳 38 (282) 42 (214)
    下载: 导出CSV
    Baidu
  • [1]

    Jackson T A, Eklund D R, Fink A J 2004 J. Mater. Sci. 39 5905Google Scholar

    [2]

    Meritt R J, Schetz J A, Marineau E C, Lewis D R, Daniel D T 2017 J. Spacecr. Rockets 54 871Google Scholar

    [3]

    Ifti H S, Hermann T, McGilvray M, Merrifield J 2022 J. Spacecr. Rockets 59 1726Google Scholar

    [4]

    Saikia B, Brehm C 2023 AIAA Aviation 2023 Forum San Diego, CA, USA, June 12–16, 2023 p3673

    [5]

    Stalmach Jr. C J, Bertin J J, Pope T C, McCloskey M H 1971 A Study of Boundary Layer Transition on Outgassing Cones in Hypersonic Flow (NASA Contractor Report) NASA-CR-1908

    [6]

    Ghaffari S, Marxen O, Iaccarino G, Shaqfeh E S G 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4–7, 2010 p706

    [7]

    Pappas C C, Okuno A F 1964 Heat-transfer Measurement for Binary Gas Laminar Boundary Layers with High Rates of Injection (NASA Technical Note) NASA-TN-D-2473

    [8]

    Liu X, Zhao R, Wen C, Yuan W 2024 Acta Mech. 235 1109Google Scholar

    [9]

    Starkenberg J, Cresci R J 1976 AIAA J. 14 461Google Scholar

    [10]

    Marvin J G, Akin C M 1970 AIAA J. 8 857Google Scholar

    [11]

    Bertin J J, McCloskey M H, Stalmach Jr. C J, Wright R L 1972 10th AIAA Aerospace Sciences Meeting San Diego, CA, USA, January 17–19, 1972 p183

    [12]

    Scott C J, Anderson G E 1958 J. Aerosp. Sci. 25 791Google Scholar

    [13]

    Schneider S P 2010 J. Spacecr. Rockets 47 225Google Scholar

    [14]

    Jewell J S, Leyva I A, Parziale N J, Shepherd J E 2011 28th International Symposium on Shock Waves Berlin, Heidelberg, July 17–22, 2011 p735

    [15]

    Fujii K, Hornung H G 2003 AIAA J. 41 1282Google Scholar

    [16]

    Miró Miró F, Dehairs P, Pinna F, Gkolia M, Masutti D, Regert T, Chazot O 2019 AIAA J. 57 1567Google Scholar

    [17]

    Schmidt B E, Shepherd J E 2019 AIAA J. 57 5230Google Scholar

    [18]

    Camillo G P, Wagner A, Dittert C, Benjamin L, Wartemann V, Neumann J, Hink R 2020 Exp. Fluids 61 162Google Scholar

    [19]

    Kerth P, Wylie S, Ravichandran R, McGilvray M 2022 AIAA Aviation 2022 Forum Chicago, IL, June 27–July 1, 2022 p3856

    [20]

    Liu Y Q, Jiang P X, Jin S S, Sun J G 2010 Int. J. Heat Mass Transfer 53 5364Google Scholar

    [21]

    Ifti H S, Hermann T, McGilvray M 2023 AIAA J. 61 3541Google Scholar

    [22]

    李瑾, 苏伟, 黄章峰, 刘文伶 2020 航空动力学报 35 280Google Scholar

    Li J, Su W, Huang Z F, Liu W L 2020 J. Aerosp. Power 35 280Google Scholar

    [23]

    Beckwith I E 1975 AIAA J. 13 300Google Scholar

    [24]

    易仕和, 刘小林, 牛海波, 陆小革, 何霖 2020 空气动力学学报 38 137Google Scholar

    Yi S H, Liu X L, Niu H B, Lu X G, He L 2020 Acta Aerodyn. Sin. 38 137Google Scholar

    [25]

    Liu X L, Yi S H, Niu H B, He L 2020 Exp. Therm. Fluid Sci. 118 110143Google Scholar

    [26]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China Ser. E: Technol. Sci. 52 3640Google Scholar

    [27]

    冈敦殿, 易仕和, 米琦, 陆小革 2022 气体物理 7 33Google Scholar

    Gang D D, Yi S H, Mi Q, Lu X G 2022 Phys. Gases 7 33Google Scholar

    [28]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China Ser. G: Phys. , Mech. Astron. 52 2001Google Scholar

    [29]

    全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2014 63 084703Google Scholar

    Quan P G, Yi S H, Wu Y, Zhu Y Z, Chen Z 2014 Acta Phys. Sin. 63 084703Google Scholar

    [30]

    Xu X W, Yi S H, Zhang F, Zhang B, Liu X L 2021 AIAA J. 59 439Google Scholar

    [31]

    朱杨柱, 易仕和, 孔小平, 何霖 2015 64 064701Google Scholar

    Zhu Y Z, Yi S H, Kong X P, He L 2015 Acta Phys. Sin. 64 064701Google Scholar

    [32]

    Ding H L, Yi S H, Ouyang T C, Zhao Y X 2020 Meas. Sci. Technol. 31 085302Google Scholar

    [33]

    何霖, 易仕和, 陆小革 2017 66 024701Google Scholar

    He L, Yi S H, Lu X G 2017 Acta Phys. Sin. 66 024701Google Scholar

    [34]

    Yi S H, Tian L F, Zhao Y X, He L, Chen Z 2010 Chin. Sci. Bull. 55 3545Google Scholar

    [35]

    Ifti H S, Hermann T, McGilvray M, Larrimbe L, Hedgecock R, Vandeperre L 2022 AIAA J. 60 3286Google Scholar

    [36]

    1st Ed.) (Beijing: China Machine Press) [赵学端, 廖其奠 1983 黏性流体力学 (第一版) (北京: 机械工业出版社]

    Zhao X D, Liao Q D 1983 Viscous Fluid Dynamics

    [37]

    陈久芬, 徐洋, 许晓斌, 邹琼芬, 凌岗, 张毅锋 2023 实验流体力学 37 51Google Scholar

    Chen J F, Xu Y, Xu X B, Zou Q F, Ling G, Zhang Y F 2023 J. Experim. Fluid Mech. 37 51Google Scholar

    [38]

    刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海 2018 67 174701Google Scholar

    Liu X L, Yi S H, Niu H B, Lu X G, Zhao X H 2018 Acta Phys. Sin. 67 174701Google Scholar

    [39]

    Zhang B, Yi S H, Niu H B, Liu X L, Lu X G, He L 2023 Exp. Therm. Fluid Sci. 141 110786Google Scholar

    [40]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 024704Google Scholar

    [41]

    Kennedy R E, Laurence S J, Smith M S, Marineau E C 2017 55th AIAA Aerospace Sciences Meeting Grapevine, Texas, January 9–13, 2017 p1683

    [42]

    Zhang C H, Lee C B 2017 J. Visualization 20 7Google Scholar

    [43]

    Schmidt B E, Bitter N P, Hornung H G, Shepherd J E 2016 AIAA J. 54 161Google Scholar

    [44]

    Mack L M 1984 Boundary-layer Linear Stability Theory (AGARD Spec. Course on Stability and Transition of Laminar Flow

    [45]

    Grossir G, Pinna F, Bonucci G, Regert T, Rambaud P, Chazot O 2014 7th AIAA Theoretical Fluid Mechanics Conference Atlanta, GA, June 16–20, 2014 p2779

    [46]

    Stetson K F, Kimmel R L 1992 30th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, January 6–9, 1992 p737

    [47]

    Pagella A, Rist U, Wagner S 2002 Phys. Fluids 14 2088Google Scholar

    [48]

    Hu Y F, Yi S H, Liu X L, Xu X W, Zhang B 2024 Aerosp. Sci. Technol. 146 108951Google Scholar

  • [1] 曾瑞童, 易仕和, 陆小革, 赵玉新, 张博, 冈敦殿. 内流可视超声速喷管边界层实验研究.  , 2024, 73(16): 164702. doi: 10.7498/aps.73.20240713
    [2] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层的流动演化.  , 2024, 73(10): 104701. doi: 10.7498/aps.73.20240128
    [3] 刘勇, 涂国华, 向星皓, 李晓虎, 郭启龙, 万兵兵. 横向矩形微槽抑制高超声速第二模态扰动波的参数化研究.  , 2022, 71(19): 194701. doi: 10.7498/aps.71.20220851
    [4] 郑文鹏, 易仕和, 牛海波, 霍俊杰. 高超声速4∶1椭圆锥横流不稳定性实验研究.  , 2021, 70(24): 244702. doi: 10.7498/aps.70.20210807
    [5] 牛海波, 易仕和, 刘小林, 霍俊杰, 冈敦殿. 高超声速三角翼上横流不稳定性的实验研究.  , 2021, 70(13): 134701. doi: 10.7498/aps.70.20201777
    [6] 段亮, 刘冲, 赵立臣, 杨战营. 基本非线性波与调制不稳定性的精确对应.  , 2020, 69(1): 010501. doi: 10.7498/aps.69.20191385
    [7] 唐冰亮, 郭善广, 宋国正, 罗彦浩. 脉冲电弧等离子体激励控制超声速平板边界层转捩实验.  , 2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
    [8] 张博, 何霖, 易仕和. 超声速湍流边界层密度脉动小波分析.  , 2020, 69(21): 214702. doi: 10.7498/aps.69.20200748
    [9] 李强, 赵磊, 陈苏宇, 江涛, 庄宇, 张扣立. 展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究.  , 2020, 69(2): 024703. doi: 10.7498/aps.69.20191155
    [10] 刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海. 高超声速条件下7°直圆锥边界层转捩实验研究.  , 2018, 67(17): 174701. doi: 10.7498/aps.67.20180531
    [11] 刘小林, 易仕和, 牛海波, 陆小革. 激光聚焦扰动作用下高超声速边界层稳定性实验研究.  , 2018, 67(21): 214701. doi: 10.7498/aps.67.20181192
    [12] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性.  , 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [13] 丁浩林, 易仕和, 朱杨柱, 赵鑫海, 何霖. 不同光线入射角度下超声速湍流边界层气动光学效应的实验研究.  , 2017, 66(24): 244201. doi: 10.7498/aps.66.244201
    [14] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性.  , 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [15] 王立锋, 滕爱萍, 叶文华, 范征锋, 陶烨晟, 林传栋, 李英骏. 超声速流体Kelvin-Helmholtz不稳定性速度梯度效应研究.  , 2009, 58(12): 8426-8431. doi: 10.7498/aps.58.8426
    [16] 简广德, 董家齐. 托卡马克等离子体中动力剪切阿尔芬波不稳定性的数值研究.  , 2005, 54(4): 1641-1647. doi: 10.7498/aps.54.1641
    [17] 张有霆, 陈明. 垂直泵的结构对YIG单晶薄膜的第二级自旋波不稳定性临界场的影响.  , 1991, 40(6): 1017-1024. doi: 10.7498/aps.40.1017
    [18] 涂传诒. 磁层顶中的低混杂漂移不稳定性.  , 1982, 31(1): 1-16. doi: 10.7498/aps.31.1
    [19] 陆全康. 关于等离子体的电磁波不稳定性(Ⅱ).  , 1981, 30(2): 266-270. doi: 10.7498/aps.30.266
    [20] 陆全康. 关于等离子体的电磁波不稳定性.  , 1964, 20(4): 289-296. doi: 10.7498/aps.20.289
计量
  • 文章访问数:  1509
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-15
  • 修回日期:  2024-04-16
  • 上网日期:  2024-04-24
  • 刊出日期:  2024-06-20

/

返回文章
返回
Baidu
map