-
壁面渗透气膜是一种有应用前景的高超声速边界层转捩控制和减阻降热方式. 在马赫数6高超声速静音风洞内, 使用纳米粒子示踪的平面激光散射(nano-tracer planar laser scattering, NPLS)技术和高频脉动压力测试技术, 研究了壁面渗透气膜工质(氦气、空气和二氧化碳)在相同体积流量条件下对圆锥高超声速边界层的影响. 实验结果表明, 壁面渗透气膜显著增厚了边界层, 最厚位置都出现在渗透区域下游边界处, 且氦气气膜时边界层最薄, 二氧化碳气膜时最厚. 通常, 空气气膜和二氧化碳气膜使得边界层内提前出现规则的绳状交织的第二模态波结构, 但体积流量较大条件下二氧化碳气膜时, 扰动波结构类似剪切层不稳定性. 氦气气膜时, 扰动波结构不是第二模态波, 其形状不规则, 随时空变化较大, 壁面脉动压力功率谱密度没有出现峰值频率. 空气气膜时第二模态波波长大约是边界层厚度的2—3倍, 而二氧化碳气膜时增大到3倍以上. 二氧化碳气膜时第二模态波峰值频率最小, 频带范围最窄, 波长最长, 幅值最大, 扰动波传播距离较远且非线性相互作用较强.Wall-seeping gas film (WSGF) is a promising method of controlling hypersonic boundary layer transition and reducing friction drag and heat transfer. Experiments are conducted in a Mach 6 hypersonic quiet wind tunnel by using nano-tracer planar laser scattering (NPLS) and high-frequency fluctuating pressure measuring technique. This work investigates the effects of wall-seeping helium, air, and carbon dioxide gas films under identical volume flow rate condition on conical boundary layer thickness, disturbance wave structure, wavelength, frequency, amplitude, and nonlinear interaction. The experimental results reveal that the WSGF significantly thickens the hypersonic boundary layer, with the thickest position appearing at the downstream boundary of the seeping zone. The boundary layer thickness is thinnest for helium gas film but thickest for carbon dioxide gas film. Generally, air gas film and carbon dioxide gas film induce the regular, rope-like, and interlaced second-mode waves to appear in advance in the boundary layer. However, under a higher volume flow rate for carbon dioxide gas film, the disturbance wave structure resembles interface fluctuations, with a characteristic wavelength of approximately 18 mm and a peak frequency as low as about 35 kHz, but no the rope-like interlaced characteristic. At this time, the influence of shear layer instability becomes significant. The disturbance waves do not exhibit second-mode wave characteristics for wall-seeping helium gas film, whose shape is irregular and undergoes deformation with time and space. Additionally, the power spectral density of wall fluctuating pressure exhibits insignificant variation with volume flow rate and flow direction, which is similar to the characteristic of power spectral density in the laminar boundary layer and has no peak frequency. The wavelength of second-mode waves is about 2-3 times the boundary layer thickness for air gas film, and increases to more than 3 times for carbon dioxide gas film. The application of carbon dioxide gas film results in smaller peak frequency and bandwidth of disturbance wave, larger characteristic wavelength and amplitude, longer propagation distance, and stronger nonlinear interaction than the application of air gas film. In the future, attention should be paid to understanding disturbance wave characteristics in the boundary layer for the helium gas film and shear layer instability under larger volume flow rates.
-
Keywords:
- hypersonic boundary layer /
- wall-seeping gas film /
- second-mode waves /
- shear layer instability
[1] Jackson T A, Eklund D R, Fink A J 2004 J. Mater. Sci. 39 5905Google Scholar
[2] Meritt R J, Schetz J A, Marineau E C, Lewis D R, Daniel D T 2017 J. Spacecr. Rockets 54 871Google Scholar
[3] Ifti H S, Hermann T, McGilvray M, Merrifield J 2022 J. Spacecr. Rockets 59 1726Google Scholar
[4] Saikia B, Brehm C 2023 AIAA Aviation 2023 Forum San Diego, CA, USA, June 12–16, 2023 p3673
[5] Stalmach Jr. C J, Bertin J J, Pope T C, McCloskey M H 1971 A Study of Boundary Layer Transition on Outgassing Cones in Hypersonic Flow (NASA Contractor Report) NASA-CR-1908
[6] Ghaffari S, Marxen O, Iaccarino G, Shaqfeh E S G 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4–7, 2010 p706
[7] Pappas C C, Okuno A F 1964 Heat-transfer Measurement for Binary Gas Laminar Boundary Layers with High Rates of Injection (NASA Technical Note) NASA-TN-D-2473
[8] Liu X, Zhao R, Wen C, Yuan W 2024 Acta Mech. 235 1109Google Scholar
[9] Starkenberg J, Cresci R J 1976 AIAA J. 14 461Google Scholar
[10] Marvin J G, Akin C M 1970 AIAA J. 8 857Google Scholar
[11] Bertin J J, McCloskey M H, Stalmach Jr. C J, Wright R L 1972 10th AIAA Aerospace Sciences Meeting San Diego, CA, USA, January 17–19, 1972 p183
[12] Scott C J, Anderson G E 1958 J. Aerosp. Sci. 25 791Google Scholar
[13] Schneider S P 2010 J. Spacecr. Rockets 47 225Google Scholar
[14] Jewell J S, Leyva I A, Parziale N J, Shepherd J E 2011 28th International Symposium on Shock Waves Berlin, Heidelberg, July 17–22, 2011 p735
[15] Fujii K, Hornung H G 2003 AIAA J. 41 1282Google Scholar
[16] Miró Miró F, Dehairs P, Pinna F, Gkolia M, Masutti D, Regert T, Chazot O 2019 AIAA J. 57 1567Google Scholar
[17] Schmidt B E, Shepherd J E 2019 AIAA J. 57 5230Google Scholar
[18] Camillo G P, Wagner A, Dittert C, Benjamin L, Wartemann V, Neumann J, Hink R 2020 Exp. Fluids 61 162Google Scholar
[19] Kerth P, Wylie S, Ravichandran R, McGilvray M 2022 AIAA Aviation 2022 Forum Chicago, IL, June 27–July 1, 2022 p3856
[20] Liu Y Q, Jiang P X, Jin S S, Sun J G 2010 Int. J. Heat Mass Transfer 53 5364Google Scholar
[21] Ifti H S, Hermann T, McGilvray M 2023 AIAA J. 61 3541Google Scholar
[22] 李瑾, 苏伟, 黄章峰, 刘文伶 2020 航空动力学报 35 280Google Scholar
Li J, Su W, Huang Z F, Liu W L 2020 J. Aerosp. Power 35 280Google Scholar
[23] Beckwith I E 1975 AIAA J. 13 300Google Scholar
[24] 易仕和, 刘小林, 牛海波, 陆小革, 何霖 2020 空气动力学学报 38 137Google Scholar
Yi S H, Liu X L, Niu H B, Lu X G, He L 2020 Acta Aerodyn. Sin. 38 137Google Scholar
[25] Liu X L, Yi S H, Niu H B, He L 2020 Exp. Therm. Fluid Sci. 118 110143Google Scholar
[26] Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China Ser. E: Technol. Sci. 52 3640Google Scholar
[27] 冈敦殿, 易仕和, 米琦, 陆小革 2022 气体物理 7 33Google Scholar
Gang D D, Yi S H, Mi Q, Lu X G 2022 Phys. Gases 7 33Google Scholar
[28] Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China Ser. G: Phys. , Mech. Astron. 52 2001Google Scholar
[29] 全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2014 63 084703Google Scholar
Quan P G, Yi S H, Wu Y, Zhu Y Z, Chen Z 2014 Acta Phys. Sin. 63 084703Google Scholar
[30] Xu X W, Yi S H, Zhang F, Zhang B, Liu X L 2021 AIAA J. 59 439Google Scholar
[31] 朱杨柱, 易仕和, 孔小平, 何霖 2015 64 064701Google Scholar
Zhu Y Z, Yi S H, Kong X P, He L 2015 Acta Phys. Sin. 64 064701Google Scholar
[32] Ding H L, Yi S H, Ouyang T C, Zhao Y X 2020 Meas. Sci. Technol. 31 085302Google Scholar
[33] 何霖, 易仕和, 陆小革 2017 66 024701Google Scholar
He L, Yi S H, Lu X G 2017 Acta Phys. Sin. 66 024701Google Scholar
[34] Yi S H, Tian L F, Zhao Y X, He L, Chen Z 2010 Chin. Sci. Bull. 55 3545Google Scholar
[35] Ifti H S, Hermann T, McGilvray M, Larrimbe L, Hedgecock R, Vandeperre L 2022 AIAA J. 60 3286Google Scholar
[36] 1st Ed.) (Beijing: China Machine Press) [赵学端, 廖其奠 1983 黏性流体力学 (第一版) (北京: 机械工业出版社]
Zhao X D, Liao Q D 1983 Viscous Fluid Dynamics
[37] 陈久芬, 徐洋, 许晓斌, 邹琼芬, 凌岗, 张毅锋 2023 实验流体力学 37 51Google Scholar
Chen J F, Xu Y, Xu X B, Zou Q F, Ling G, Zhang Y F 2023 J. Experim. Fluid Mech. 37 51Google Scholar
[38] 刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海 2018 67 174701Google Scholar
Liu X L, Yi S H, Niu H B, Lu X G, Zhao X H 2018 Acta Phys. Sin. 67 174701Google Scholar
[39] Zhang B, Yi S H, Niu H B, Liu X L, Lu X G, He L 2023 Exp. Therm. Fluid Sci. 141 110786Google Scholar
[40] He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 024704Google Scholar
[41] Kennedy R E, Laurence S J, Smith M S, Marineau E C 2017 55th AIAA Aerospace Sciences Meeting Grapevine, Texas, January 9–13, 2017 p1683
[42] Zhang C H, Lee C B 2017 J. Visualization 20 7Google Scholar
[43] Schmidt B E, Bitter N P, Hornung H G, Shepherd J E 2016 AIAA J. 54 161Google Scholar
[44] Mack L M 1984 Boundary-layer Linear Stability Theory (AGARD Spec. Course on Stability and Transition of Laminar Flow
[45] Grossir G, Pinna F, Bonucci G, Regert T, Rambaud P, Chazot O 2014 7th AIAA Theoretical Fluid Mechanics Conference Atlanta, GA, June 16–20, 2014 p2779
[46] Stetson K F, Kimmel R L 1992 30th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, January 6–9, 1992 p737
[47] Pagella A, Rist U, Wagner S 2002 Phys. Fluids 14 2088Google Scholar
[48] Hu Y F, Yi S H, Liu X L, Xu X W, Zhang B 2024 Aerosp. Sci. Technol. 146 108951Google Scholar
-
图 13 壁面渗透气膜时壁面脉动压力功率谱密度 (a) 氦气, 20 SLPM; (b) 空气, 20 SLPM; (c) 二氧化碳, 20 SLPM; (d) 氦气, 40 SLPM; (e) 空气, 40 SLPM; (f) 二氧化碳, 40 SLPM; (g) 氦气, 60 SLPM; (h) 空气, 60 SLPM; (i) 二氧化碳, 60 SLPM
Fig. 13. PSD of wall fluctuating pressure with WSGF: (a) Helium, 20 SLPM; (b) air, 20 SLPM; (c) carbon dioxide, 20 SLPM; (d) helium, 40 SLPM; (e) air, 40 SLPM; (f) carbon dioxide, 40 SLPM; (g) helium, 60 SLPM; (h) air, 60 SLPM; (i) carbon dioxide, 60 SLPM.
图 14 壁面渗透气膜时x = 420 mm处壁面脉动压力双相干谱 (a)—(c)分别是体积流量20, 40, 60 SLPM条件下壁面渗透空气气膜; (d)—(f)分别是体积流量20, 40, 60 SLPM条件下壁面渗透二氧化碳气膜
Fig. 14. Bicoherence spectrum of wall fluctuating pressure at x = 420 mm with WSGF: (a)–(c) Wall-seeping air gas film at $ \dot Q $ = 20, 40, and 60 SLPM, respectively; (d)–(f) wall-seeping carbon dioxide gas film at $ \dot{Q} $ = 20, 40, and 60 SLPM, respectively.
表 1 壁面渗透气膜的渗透比
Table 1. Seeping ratio of WSGF.
体积流量$\dot Q/{\text{ SLPM}}$ 工质 渗透比F/% 20 氦气 0.020 空气 0.142 二氧化碳 0.217 40 氦气 0.039 空气 0.285 二氧化碳 0.435 60 氦气 0.059 空气 0.429 二氧化碳 0.655 表 2 三种工质的物性参数
Table 2. Physical properties of three working media.
工质 $\rho /({10^{ - 3}}~{\text{kg}} {\cdot} {{\text{m}}^{ - 3}})$ $\mu /({10^{ - 5}}~{\text{Pa}} {\cdot} {\text{s}})$ $a/({\text{m}} {\cdot} {{\text{s}}^{ - 1}})$ 氦气 0.72 1.98 1016 空气 5.25 1.85 346 二氧化碳 7.97 1.51 269 表 3 x = 420 mm处扰动波波长与当地边界层厚度的比值
Table 3. Ratio of disturbance wave wavelength to local boundary layer thickness at x = 420 mm.
体积流量$\dot Q/{\text{ SLPM}}$ 工质 波长与厚度的比值 20 氦气 4.8±0.6 空气 2.2±0.2 二氧化碳 3.1±0.2 40 氦气 3.6±0.5 空气 2.4±0.2 二氧化碳 3.6±0.2 60 氦气 2.3±0.4 空气 2.6±0.2 二氧化碳 3.4±0.3 表 4 x = 420 mm处功率谱密度峰值频率(括号内为功率)
Table 4. Peak frequencies of PSD at x = 420 mm (corresponding PSD value in brackets).
体积流量$\dot Q/{\text{ SLPM}}$ 工质 基波频率f0/kHz 二次谐波频率2f0/kHz 20 空气 101 (55) — 二氧化碳 80 (83) — 40 空气 72 (145) 144 (14) 二氧化碳 47 (883) 96 (33) 60 空气 58 (583) 117 (31) 二氧化碳 36 (2435) 73 (53) 表 5 x = 460 mm处功率谱密度峰值频率(括号内为功率)
Table 5. Peak frequencies of PSD at x = 460 mm (corresponding PSD value in brackets).
体积流量$\dot Q/{\text{ SLPM}}$ 工质 第1峰值频率f1/kHz 第2峰值频率f2/kHz 20 空气 111 (20) — 二氧化碳 74 (19) 96 (21) 40 空气 66 (22) 85 (17) 二氧化碳 44 (54) 61 (49) 60 空气 54 (40) 69 (40) 二氧化碳 38 (282) 42 (214) -
[1] Jackson T A, Eklund D R, Fink A J 2004 J. Mater. Sci. 39 5905Google Scholar
[2] Meritt R J, Schetz J A, Marineau E C, Lewis D R, Daniel D T 2017 J. Spacecr. Rockets 54 871Google Scholar
[3] Ifti H S, Hermann T, McGilvray M, Merrifield J 2022 J. Spacecr. Rockets 59 1726Google Scholar
[4] Saikia B, Brehm C 2023 AIAA Aviation 2023 Forum San Diego, CA, USA, June 12–16, 2023 p3673
[5] Stalmach Jr. C J, Bertin J J, Pope T C, McCloskey M H 1971 A Study of Boundary Layer Transition on Outgassing Cones in Hypersonic Flow (NASA Contractor Report) NASA-CR-1908
[6] Ghaffari S, Marxen O, Iaccarino G, Shaqfeh E S G 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4–7, 2010 p706
[7] Pappas C C, Okuno A F 1964 Heat-transfer Measurement for Binary Gas Laminar Boundary Layers with High Rates of Injection (NASA Technical Note) NASA-TN-D-2473
[8] Liu X, Zhao R, Wen C, Yuan W 2024 Acta Mech. 235 1109Google Scholar
[9] Starkenberg J, Cresci R J 1976 AIAA J. 14 461Google Scholar
[10] Marvin J G, Akin C M 1970 AIAA J. 8 857Google Scholar
[11] Bertin J J, McCloskey M H, Stalmach Jr. C J, Wright R L 1972 10th AIAA Aerospace Sciences Meeting San Diego, CA, USA, January 17–19, 1972 p183
[12] Scott C J, Anderson G E 1958 J. Aerosp. Sci. 25 791Google Scholar
[13] Schneider S P 2010 J. Spacecr. Rockets 47 225Google Scholar
[14] Jewell J S, Leyva I A, Parziale N J, Shepherd J E 2011 28th International Symposium on Shock Waves Berlin, Heidelberg, July 17–22, 2011 p735
[15] Fujii K, Hornung H G 2003 AIAA J. 41 1282Google Scholar
[16] Miró Miró F, Dehairs P, Pinna F, Gkolia M, Masutti D, Regert T, Chazot O 2019 AIAA J. 57 1567Google Scholar
[17] Schmidt B E, Shepherd J E 2019 AIAA J. 57 5230Google Scholar
[18] Camillo G P, Wagner A, Dittert C, Benjamin L, Wartemann V, Neumann J, Hink R 2020 Exp. Fluids 61 162Google Scholar
[19] Kerth P, Wylie S, Ravichandran R, McGilvray M 2022 AIAA Aviation 2022 Forum Chicago, IL, June 27–July 1, 2022 p3856
[20] Liu Y Q, Jiang P X, Jin S S, Sun J G 2010 Int. J. Heat Mass Transfer 53 5364Google Scholar
[21] Ifti H S, Hermann T, McGilvray M 2023 AIAA J. 61 3541Google Scholar
[22] 李瑾, 苏伟, 黄章峰, 刘文伶 2020 航空动力学报 35 280Google Scholar
Li J, Su W, Huang Z F, Liu W L 2020 J. Aerosp. Power 35 280Google Scholar
[23] Beckwith I E 1975 AIAA J. 13 300Google Scholar
[24] 易仕和, 刘小林, 牛海波, 陆小革, 何霖 2020 空气动力学学报 38 137Google Scholar
Yi S H, Liu X L, Niu H B, Lu X G, He L 2020 Acta Aerodyn. Sin. 38 137Google Scholar
[25] Liu X L, Yi S H, Niu H B, He L 2020 Exp. Therm. Fluid Sci. 118 110143Google Scholar
[26] Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China Ser. E: Technol. Sci. 52 3640Google Scholar
[27] 冈敦殿, 易仕和, 米琦, 陆小革 2022 气体物理 7 33Google Scholar
Gang D D, Yi S H, Mi Q, Lu X G 2022 Phys. Gases 7 33Google Scholar
[28] Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China Ser. G: Phys. , Mech. Astron. 52 2001Google Scholar
[29] 全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2014 63 084703Google Scholar
Quan P G, Yi S H, Wu Y, Zhu Y Z, Chen Z 2014 Acta Phys. Sin. 63 084703Google Scholar
[30] Xu X W, Yi S H, Zhang F, Zhang B, Liu X L 2021 AIAA J. 59 439Google Scholar
[31] 朱杨柱, 易仕和, 孔小平, 何霖 2015 64 064701Google Scholar
Zhu Y Z, Yi S H, Kong X P, He L 2015 Acta Phys. Sin. 64 064701Google Scholar
[32] Ding H L, Yi S H, Ouyang T C, Zhao Y X 2020 Meas. Sci. Technol. 31 085302Google Scholar
[33] 何霖, 易仕和, 陆小革 2017 66 024701Google Scholar
He L, Yi S H, Lu X G 2017 Acta Phys. Sin. 66 024701Google Scholar
[34] Yi S H, Tian L F, Zhao Y X, He L, Chen Z 2010 Chin. Sci. Bull. 55 3545Google Scholar
[35] Ifti H S, Hermann T, McGilvray M, Larrimbe L, Hedgecock R, Vandeperre L 2022 AIAA J. 60 3286Google Scholar
[36] 1st Ed.) (Beijing: China Machine Press) [赵学端, 廖其奠 1983 黏性流体力学 (第一版) (北京: 机械工业出版社]
Zhao X D, Liao Q D 1983 Viscous Fluid Dynamics
[37] 陈久芬, 徐洋, 许晓斌, 邹琼芬, 凌岗, 张毅锋 2023 实验流体力学 37 51Google Scholar
Chen J F, Xu Y, Xu X B, Zou Q F, Ling G, Zhang Y F 2023 J. Experim. Fluid Mech. 37 51Google Scholar
[38] 刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海 2018 67 174701Google Scholar
Liu X L, Yi S H, Niu H B, Lu X G, Zhao X H 2018 Acta Phys. Sin. 67 174701Google Scholar
[39] Zhang B, Yi S H, Niu H B, Liu X L, Lu X G, He L 2023 Exp. Therm. Fluid Sci. 141 110786Google Scholar
[40] He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 024704Google Scholar
[41] Kennedy R E, Laurence S J, Smith M S, Marineau E C 2017 55th AIAA Aerospace Sciences Meeting Grapevine, Texas, January 9–13, 2017 p1683
[42] Zhang C H, Lee C B 2017 J. Visualization 20 7Google Scholar
[43] Schmidt B E, Bitter N P, Hornung H G, Shepherd J E 2016 AIAA J. 54 161Google Scholar
[44] Mack L M 1984 Boundary-layer Linear Stability Theory (AGARD Spec. Course on Stability and Transition of Laminar Flow
[45] Grossir G, Pinna F, Bonucci G, Regert T, Rambaud P, Chazot O 2014 7th AIAA Theoretical Fluid Mechanics Conference Atlanta, GA, June 16–20, 2014 p2779
[46] Stetson K F, Kimmel R L 1992 30th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, January 6–9, 1992 p737
[47] Pagella A, Rist U, Wagner S 2002 Phys. Fluids 14 2088Google Scholar
[48] Hu Y F, Yi S H, Liu X L, Xu X W, Zhang B 2024 Aerosp. Sci. Technol. 146 108951Google Scholar
计量
- 文章访问数: 1509
- PDF下载量: 70
- 被引次数: 0