搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合实际刻蚀数据的离子刻蚀产额优化建模方法

高扬福 孙晓民 宋亦旭 阮聪

引用本文:
Citation:

结合实际刻蚀数据的离子刻蚀产额优化建模方法

高扬福, 孙晓民, 宋亦旭, 阮聪

An optimization method for ion etching yield modeling combined with factual etching data

Gao Yang-Fu, Sun Xiao-Min, Song Yi-Xu, Ruan Cong
PDF
导出引用
  • 刻蚀表面仿真是研究等离子体刻蚀工艺过程机理的重要手段. 在刻蚀表面仿真方法中, 刻蚀表面演化模型和离子刻蚀产额模型直接决定了刻蚀表面演化结果. 但现有的刻蚀表面演化模型不够精确, 且目前离子刻蚀产额模型主要来自分子动力学仿真和物理实验, 而实际加工过程十分复杂,等效的离子刻蚀产额包含很多因素. 针对这些问题,本文首先对当前的刻蚀表面演化模型进行改进, 同时重新定义了离子刻蚀产额模型的优化目标, 并利用实际刻蚀加工数据来优化离子刻蚀产额模型. 为缩短优化模型所用时间, 本文采用并行方法来加速优化过程. 最后, 将得到的离子刻蚀产额模型参数应用于采用元胞自动机法的刻蚀工艺实际仿真过程中. 实验结果表明, 该优化建模方法确实提高了仿真的精确度, 同时优化过程所用时间也大大减少.
    The profile surface simulation is an important method to study the ion etching mechanism. In profile surface simulation, the result of surface evolution is primarily determined by the surface evolution model and the etching yield optimization model as well. However, the currently available surface evolution model is not accurate enough. What's more, most of the data used in etching yield optimization model are based on simulation, while no factual data are used to optimize the parameters of ion etching yield model. In order to solve these problems, the accuracy of current evolution model is improved, the optimal objects of etching yield model are redefined, and the factual etching data are introduced to optimize the etching yield model for the first time. In this paper, parallel method is also adopted to speed up the optimization process, whose optimized parameters are then applied to the etching simulation process that is based on cellular automata. The experimental results show that our proposed approach does improve the accuracy of simulation and greatly shorten the optimization process.
    • 基金项目: 国家重大科技专项(批准号: 2011ZX2403-002)资助的课题.
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX2403-002).
    [1]

    Kawai H 2008 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [2]

    Saussac J, Margot J, Chaker M 2009 J. Vac. Sci. Technol. A 27 130

    [3]

    María E L, Luis A 2014 Chin. Phys. B 23 050701

    [4]

    Song Y R, Jiang G P, Gong Y W 2013 Chin. Phys. B 22 040502

    [5]

    Levinson J A, Shaqfeh E S G, Balooch M, Hamza A V 2000 J. Vac. Sci. Technol. B 18 172

    [6]

    Tuda M, Nishikawa K, Ono K 1997 J. Appl. Phys. 81 960

    [7]

    Osher S, Sethian J A 1988 J. Comput. Phys. 79 12

    [8]

    Osher S, Fedkiw R P 2001 J. Comput. Phys. 169 463

    [9]

    Chang J P, Arnold J C, Zau G C H, Shin H S, Sawin H H 1997 J. Vac. Sci. Technol. A 15 1853

    [10]

    Gou F, Kleyn A W, Gleeson M A 2008 Int. Rev. Phys. Chem. 27 229

    [11]

    Gao Y F, Song Y X, Sun X M 2014 Acta Phys. Sin. 63 048201 (in Chinese) [高扬福, 宋亦旭, 孙晓民 2014 63 048201]

    [12]

    Liu H H, Liu Y H 2012 Chin. Phys. B 21 026102

    [13]

    Liu J F 2009 Chin. Phys. B 18 2615

    [14]

    Ishibuchi H, Sakane Y, Tsukamota N, Nojima Y 2009 Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, USA, October 11-14, 2009 p1758

    [15]

    Zheng S L, Song Y X, Sun X M 2013 Acta Phys. Sin. 62 108201 (in Chinese) [郑树琳, 宋亦旭, 孙晓民 2013 62 108201]

    [16]

    Zhang Q, Li H 2007 IEEE T. Evolut. Comput. 11 712

    [17]

    Nebro A J, Durillo J J 2010 Learning and Intelligent Optimization (Venice: Springer Berlin Heidelberg) pp303-317

  • [1]

    Kawai H 2008 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [2]

    Saussac J, Margot J, Chaker M 2009 J. Vac. Sci. Technol. A 27 130

    [3]

    María E L, Luis A 2014 Chin. Phys. B 23 050701

    [4]

    Song Y R, Jiang G P, Gong Y W 2013 Chin. Phys. B 22 040502

    [5]

    Levinson J A, Shaqfeh E S G, Balooch M, Hamza A V 2000 J. Vac. Sci. Technol. B 18 172

    [6]

    Tuda M, Nishikawa K, Ono K 1997 J. Appl. Phys. 81 960

    [7]

    Osher S, Sethian J A 1988 J. Comput. Phys. 79 12

    [8]

    Osher S, Fedkiw R P 2001 J. Comput. Phys. 169 463

    [9]

    Chang J P, Arnold J C, Zau G C H, Shin H S, Sawin H H 1997 J. Vac. Sci. Technol. A 15 1853

    [10]

    Gou F, Kleyn A W, Gleeson M A 2008 Int. Rev. Phys. Chem. 27 229

    [11]

    Gao Y F, Song Y X, Sun X M 2014 Acta Phys. Sin. 63 048201 (in Chinese) [高扬福, 宋亦旭, 孙晓民 2014 63 048201]

    [12]

    Liu H H, Liu Y H 2012 Chin. Phys. B 21 026102

    [13]

    Liu J F 2009 Chin. Phys. B 18 2615

    [14]

    Ishibuchi H, Sakane Y, Tsukamota N, Nojima Y 2009 Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, USA, October 11-14, 2009 p1758

    [15]

    Zheng S L, Song Y X, Sun X M 2013 Acta Phys. Sin. 62 108201 (in Chinese) [郑树琳, 宋亦旭, 孙晓民 2013 62 108201]

    [16]

    Zhang Q, Li H 2007 IEEE T. Evolut. Comput. 11 712

    [17]

    Nebro A J, Durillo J J 2010 Learning and Intelligent Optimization (Venice: Springer Berlin Heidelberg) pp303-317

  • [1] 陈锦峰, 朱林繁. 等离子体刻蚀建模中的电子碰撞截面数据.  , 2024, 73(9): 095201. doi: 10.7498/aps.73.20231598
    [2] 王琛, 温盼, 彭聪, 徐萌, 陈龙龙, 李喜峰, 张建华. 钝化层对背沟道刻蚀型IGZO薄膜晶体管的影响.  , 2023, 72(8): 087302. doi: 10.7498/aps.72.20222272
    [3] 白胜波, 陈志华, 张焕好, 陈高捷, 曹世程, 张升博. 硅原子层刻蚀流程的速率优化.  , 2023, 72(21): 215214. doi: 10.7498/aps.72.20231022
    [4] 张权治, 张雷宇, 马方方, 王友年. 多孔材料的低温刻蚀技术.  , 2021, 70(9): 098104. doi: 10.7498/aps.70.20202245
    [5] 赵杰, 唐德礼, 许丽, 李平川, 张帆, 李建, 桂兵仪. 阳极磁屏蔽对阳极层霍尔推力器内磁极刻蚀的影响.  , 2019, 68(21): 215202. doi: 10.7498/aps.68.20190654
    [6] 寻之朋, 唐刚, 夏辉, 郝大鹏, 宋丽建, 杨毅. 2+1维刻蚀模型生长表面等高线的共形不变性研究.  , 2014, 63(15): 150502. doi: 10.7498/aps.63.150502
    [7] 高扬福, 宋亦旭, 孙晓民. 基于刻蚀速率匹配的离子刻蚀产额优化建模方法.  , 2014, 63(4): 048201. doi: 10.7498/aps.63.048201
    [8] 吴俊, 马志斌, 沈武林, 严垒, 潘鑫, 汪建华. CVD金刚石中的氮对等离子体刻蚀的影响.  , 2013, 62(7): 075202. doi: 10.7498/aps.62.075202
    [9] 郑树琳, 宋亦旭, 孙晓民. 基于三维元胞模型的刻蚀工艺表面演化方法.  , 2013, 62(10): 108201. doi: 10.7498/aps.62.108201
    [10] 谢裕颖, 唐刚, 寻之朋, 韩奎, 夏辉, 郝大鹏, 张永伟, 李炎. 随机稀释基底上刻蚀模型动力学标度行为的数值模拟研究.  , 2012, 61(7): 070506. doi: 10.7498/aps.61.070506
    [11] 张永伟, 唐刚, 韩奎, 寻之朋, 谢裕颖, 李炎. 分形基底上刻蚀模型动力学标度行为的数值模拟研究.  , 2012, 61(2): 020511. doi: 10.7498/aps.61.020511
    [12] 贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均. 低能Cl原子刻蚀Si(100)表面的分子动力学模拟.  , 2011, 60(4): 045209. doi: 10.7498/aps.60.045209
    [13] 王凤蕊, 黄进, 刘红婕, 周信达, 蒋晓东, 吴卫东, 郑万国. 激光诱导HF酸刻蚀后熔石英后表面划痕的损伤行为研究.  , 2010, 59(7): 5122-5127. doi: 10.7498/aps.59.5122
    [14] 黄维, 陈之战, 陈博源, 张静玉, 严成锋, 肖兵, 施尔畏. 氢氟酸刻蚀对Ni/6H-SiC接触性质的作用.  , 2009, 58(5): 3443-3447. doi: 10.7498/aps.58.3443
    [15] 崔秀芝, 张天冲, 梅增霞, 刘章龙, 刘尧平, 郭阳, 苏希玉, 薛其坤, 杜小龙. 湿法刻蚀对Si基片孔点阵及ZnO外延薄膜周期形貌的影响.  , 2009, 58(1): 309-314. doi: 10.7498/aps.58.309
    [16] 吕 玲, 龚 欣, 郝 跃. 感应耦合等离子体刻蚀p-GaN的表面特性.  , 2008, 57(2): 1128-1132. doi: 10.7498/aps.57.1128
    [17] 曹 萌, 吴惠桢, 刘 成, 劳燕锋, 黄占超, 谢正生, 张 军, 江 山. 干法刻蚀影响应变量子阱发光的机理研究.  , 2007, 56(2): 1027-1031. doi: 10.7498/aps.56.1027
    [18] 王长顺, 潘 煦, Urisu Tsuneo. 同步辐射光激励的二氧化硅薄膜刻蚀研究.  , 2006, 55(11): 6163-6167. doi: 10.7498/aps.55.6163
    [19] 王 森, 俞国军, 巩金龙, 李勤涛, 朱德彰, 朱志远. 低能氩离子束对多孔铝阳极氧化膜表面的刻蚀效应研究.  , 2006, 55(3): 1517-1522. doi: 10.7498/aps.55.1517
    [20] 贺莉蓉, 顾春明, 沈文忠, 曹俊诚, 小川博司, 郭其新. 反应离子刻蚀ZnTe的THz辐射和探测研究.  , 2005, 54(10): 4938-4943. doi: 10.7498/aps.54.4938
计量
  • 文章访问数:  5901
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-19
  • 修回日期:  2014-08-10
  • 刊出日期:  2014-12-05

/

返回文章
返回
Baidu
map