搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究

韩林芷 赵占霞 马忠权

引用本文:
Citation:

化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究

韩林芷, 赵占霞, 马忠权

Process parameters of large single crystal graphene prepared by chemical vapor deposition

Han Lin-Zhi, Zhao Zhan-Xia, Ma Zhong-Quan
PDF
导出引用
  • 石墨烯作为一种二维sp2杂化碳的同素异形体, 具有优良的电学、光学、热学及力学等性质. 产业化应用石墨烯要求其具有大的尺寸且性质均一. 化学气相沉积法(CVD)的出现为制备大尺寸、高质量的石墨烯提供了可能. 本文结合近几年CVD法制备石墨烯的研究进展, 综述了影响大尺寸、单晶石墨烯制备的工艺参数, 包括衬底选择与预处理、碳源与辅助气体流量调控、腔体温度和压力控制、沉积时间以及降温速率设定等. 最后展望了制备大尺寸单晶石墨烯的研究方向.
    Graphene, as a two-dimensional sp2 hybridization allotropicity of carbon element, possesses unique properties of electricity, photology, thermology and mechanics. For industrialization, graphene possessing large dimension and homogeneous property is required. It can be prepared by chemical vapor deposition technology. In this paper, based on the progress of graphene research this year, we summarize the influence factors of graphene preparation, including substrate selection and preprocessing, carbon source and assist gas flow control, chamber temperature, pressure control, cooling rate, and deposition time setting, etc. Finally, we outlook the research direction of preparing the large-dimensional and single crystal graphenes.
    • 基金项目: 国家自然科学基金(批准号: 61274067, 60876045)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274067, 60876045).
    [1]

    Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A 2004 Science 306 666

    [2]

    Yu H L, Zhu J Q, Cao W X, Han J C 2013 Acta Phys. Sin. 62 028201 (in Chinese) [于海玲, 朱嘉琦, 曹文鑫, 韩杰才 2013 62 028201]

    [3]

    Zeng M, Wang W L, Bai X D 2013 Chin. Phys. B 22 098105

    [4]

    Park S, Ruoff R S 2009 Nature Nanotech. 4 217

    [5]

    Qin M M, Ji W, Feng Y Y, Feng W 2014 Chin. Phys. B 23 028103

    [6]

    Nyakiti L, Myers-Ward R, Wheeler V, Imhoff E, Bezares F, Chun H, Caldwell J, Friedman A, Matis B, Baldwin J 2012 Nano Lett. 12 1749

    [7]

    Xu W Y, Huang L, Que Y D, Lin X, Wang Y L, Du S X, Gao H J 2014 Chin. Phys. B 23 088108

    [8]

    Tang J, Liu Z L, Kang C Y, Pan H B, Wei S Q, Xu P S, Gao Y Q, Xu X G 2009 Chin. Phys. Lett. 26 088104

    [9]

    Wei C, Li J, Liu Q B, Cai S J, Feng Z H 2014 Acta Phys. Sin. 63 038102 (in Chinese) [蔚翠, 李佳, 刘庆彬, 蔡树军, 冯志红 2014 63 038102]

    [10]

    Somani P R, Somani S P, Umeno M 2006 Chem. Phys. Lett. 430 56

    [11]

    Feng D J, Huang W Y, Jiang S Z, Ji W, Jia D F 2013 Acta Phys. Sin. 62 054202 (in Chinese) [冯德军, 黄文育, 姜守振, 季伟, 贾东方 2013 62 054202]

    [12]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I 2010 Nature Nanotech. 5 574

    [13]

    Zhou H, Yu W J, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X 2013 Nat. Commun. 4 2096

    [14]

    Mohsin A, Liu L, Liu P, Deng W, Ivanov I N, Li G, Dyck O E, Duscher G, Dunlap J R, Xiao K 2013 ACS Nano 7 8924

    [15]

    Fuhrer M S, Lau C N, MacDonald A H 2010 MRS Bull. 35 289

    [16]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [17]

    Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F, Gao H J 2009 Adv. Mater. 21 2777

    [18]

    Coraux J, N'Diaye A T, Busse C, Michely T 2008 Nano Lett. 8 565

    [19]

    Sutter P, Sadowski J T, Sutter E 2009 Phys. Rev. B 80 245411

    [20]

    Varykhalov A, Rader O 2009 Phys. Rev. B 80 035437

    [21]

    Xue Y, Wu B, Guo Y, Huang L, Jiang L, Chen J, Geng D, Liu Y, Hu W, Yu G 2011 Nano Res. 4 1208

    [22]

    Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang W J 2012 J. Am. Chem. Soc. 134 3627

    [23]

    Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel E L, Kittrell C, Tour J M 2012 ACS Nano 6 9110

    [24]

    Chen S, Ji H, Chou H, Li Q, Li H, Suk J W, Piner R, Liao L, Cai W, Ruoff R S 2013 Adv. Mater. 25 2062

    [25]

    Geng D, Wu B, Guo Y, Huang L, Xue Y, Chen J, Yu G, Jiang L, Hu W, Liu Y 2012 Proc. Natl. Acad. Sci. 109 7992

    [26]

    Wu Y A, Fan Y, Speller S, Creeth G L, Sadowski J T, He K, Robertson A W, Allen C S, Warner J H 2012 ACS Nano 6 5010

    [27]

    Kim S M, Hsu A, Lee Y H, Dresselhaus M, Palacios T, Kim K K, Kong J 2013 Nano Technology 24 365602

    [28]

    Wu T, Ding G, Shen H, Wang H, Sun L, Jiang D, Xie X, Jiang M 2013 Adv. Funct. Mater. 23 198

    [29]

    Zhang B, Lee W H, Piner R, Kholmanov I, Wu Y, Li H, Ji H, Ruoff R S 2012 ACS Nano 6 2471

    [30]

    Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press) p7

    [31]

    Hwang C, Yoo K, Kim S J, Seo E K, Yu H, Biró L P 2011 J. Phys. Chem. C 115 22369

    [32]

    Losurdo M, Giangregorio M M, Capezzuto P, Bruno G 2011 Phys. Chem. Chem. Phys. 13 20836

    [33]

    Wu B, Geng D, Xu Z, Guo Y, Huang L, Xue Y, Chen J, Yu G, Liu Y 2013 NPG Asia Mater. 5 e36

    [34]

    Bhaviripudi S, Jia X, Dresselhaus M S, Kong J 2010 Nano Lett. 10 4128

    [35]

    Yu Q, Jauregui L A, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D 2011 Nature Mater. 10 443

    [36]

    Wofford J M, Nie S, McCarty K F, Bartelt N C, Dubon O D 2010 Nano Lett. 10 4890

    [37]

    Robinson Z R, Tyagi P, Mowll T R, Ventrice Jr C A, Hannon J B 2012 Phys. Rev. B 86 235413

    [38]

    Sun J, Cole M T, Lindvall N, Teo K B, Yurgens A 2012 Appl. Phys. Lett. 100 022102

    [39]

    Kim J, Ishihara M, Koga Y, Tsugawa K, Hasegawa M, Iijima S 2011 Appl. Phys. Lett. 98 091502

    [40]

    Kim Y, Song W, Lee S, Jeon C, Jung W, Kim M, Park C Y 2011 Appl. Phys. Lett. 98 263106

    [41]

    Zhang L, Shi Z, Liu D, Yang R, Shi D, Zhang G 2012 Nano Res. 5 258

    [42]

    Muñoz R, Gómez-Aleixandre C 2014 J. Phys. D: Appl. Phys. 47 045305

    [43]

    Lee S, Lee K, Zhong Z 2010 Nano Lett. 10 4702

  • [1]

    Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A 2004 Science 306 666

    [2]

    Yu H L, Zhu J Q, Cao W X, Han J C 2013 Acta Phys. Sin. 62 028201 (in Chinese) [于海玲, 朱嘉琦, 曹文鑫, 韩杰才 2013 62 028201]

    [3]

    Zeng M, Wang W L, Bai X D 2013 Chin. Phys. B 22 098105

    [4]

    Park S, Ruoff R S 2009 Nature Nanotech. 4 217

    [5]

    Qin M M, Ji W, Feng Y Y, Feng W 2014 Chin. Phys. B 23 028103

    [6]

    Nyakiti L, Myers-Ward R, Wheeler V, Imhoff E, Bezares F, Chun H, Caldwell J, Friedman A, Matis B, Baldwin J 2012 Nano Lett. 12 1749

    [7]

    Xu W Y, Huang L, Que Y D, Lin X, Wang Y L, Du S X, Gao H J 2014 Chin. Phys. B 23 088108

    [8]

    Tang J, Liu Z L, Kang C Y, Pan H B, Wei S Q, Xu P S, Gao Y Q, Xu X G 2009 Chin. Phys. Lett. 26 088104

    [9]

    Wei C, Li J, Liu Q B, Cai S J, Feng Z H 2014 Acta Phys. Sin. 63 038102 (in Chinese) [蔚翠, 李佳, 刘庆彬, 蔡树军, 冯志红 2014 63 038102]

    [10]

    Somani P R, Somani S P, Umeno M 2006 Chem. Phys. Lett. 430 56

    [11]

    Feng D J, Huang W Y, Jiang S Z, Ji W, Jia D F 2013 Acta Phys. Sin. 62 054202 (in Chinese) [冯德军, 黄文育, 姜守振, 季伟, 贾东方 2013 62 054202]

    [12]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I 2010 Nature Nanotech. 5 574

    [13]

    Zhou H, Yu W J, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X 2013 Nat. Commun. 4 2096

    [14]

    Mohsin A, Liu L, Liu P, Deng W, Ivanov I N, Li G, Dyck O E, Duscher G, Dunlap J R, Xiao K 2013 ACS Nano 7 8924

    [15]

    Fuhrer M S, Lau C N, MacDonald A H 2010 MRS Bull. 35 289

    [16]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [17]

    Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F, Gao H J 2009 Adv. Mater. 21 2777

    [18]

    Coraux J, N'Diaye A T, Busse C, Michely T 2008 Nano Lett. 8 565

    [19]

    Sutter P, Sadowski J T, Sutter E 2009 Phys. Rev. B 80 245411

    [20]

    Varykhalov A, Rader O 2009 Phys. Rev. B 80 035437

    [21]

    Xue Y, Wu B, Guo Y, Huang L, Jiang L, Chen J, Geng D, Liu Y, Hu W, Yu G 2011 Nano Res. 4 1208

    [22]

    Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang W J 2012 J. Am. Chem. Soc. 134 3627

    [23]

    Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel E L, Kittrell C, Tour J M 2012 ACS Nano 6 9110

    [24]

    Chen S, Ji H, Chou H, Li Q, Li H, Suk J W, Piner R, Liao L, Cai W, Ruoff R S 2013 Adv. Mater. 25 2062

    [25]

    Geng D, Wu B, Guo Y, Huang L, Xue Y, Chen J, Yu G, Jiang L, Hu W, Liu Y 2012 Proc. Natl. Acad. Sci. 109 7992

    [26]

    Wu Y A, Fan Y, Speller S, Creeth G L, Sadowski J T, He K, Robertson A W, Allen C S, Warner J H 2012 ACS Nano 6 5010

    [27]

    Kim S M, Hsu A, Lee Y H, Dresselhaus M, Palacios T, Kim K K, Kong J 2013 Nano Technology 24 365602

    [28]

    Wu T, Ding G, Shen H, Wang H, Sun L, Jiang D, Xie X, Jiang M 2013 Adv. Funct. Mater. 23 198

    [29]

    Zhang B, Lee W H, Piner R, Kholmanov I, Wu Y, Li H, Ji H, Ruoff R S 2012 ACS Nano 6 2471

    [30]

    Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press) p7

    [31]

    Hwang C, Yoo K, Kim S J, Seo E K, Yu H, Biró L P 2011 J. Phys. Chem. C 115 22369

    [32]

    Losurdo M, Giangregorio M M, Capezzuto P, Bruno G 2011 Phys. Chem. Chem. Phys. 13 20836

    [33]

    Wu B, Geng D, Xu Z, Guo Y, Huang L, Xue Y, Chen J, Yu G, Liu Y 2013 NPG Asia Mater. 5 e36

    [34]

    Bhaviripudi S, Jia X, Dresselhaus M S, Kong J 2010 Nano Lett. 10 4128

    [35]

    Yu Q, Jauregui L A, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D 2011 Nature Mater. 10 443

    [36]

    Wofford J M, Nie S, McCarty K F, Bartelt N C, Dubon O D 2010 Nano Lett. 10 4890

    [37]

    Robinson Z R, Tyagi P, Mowll T R, Ventrice Jr C A, Hannon J B 2012 Phys. Rev. B 86 235413

    [38]

    Sun J, Cole M T, Lindvall N, Teo K B, Yurgens A 2012 Appl. Phys. Lett. 100 022102

    [39]

    Kim J, Ishihara M, Koga Y, Tsugawa K, Hasegawa M, Iijima S 2011 Appl. Phys. Lett. 98 091502

    [40]

    Kim Y, Song W, Lee S, Jeon C, Jung W, Kim M, Park C Y 2011 Appl. Phys. Lett. 98 263106

    [41]

    Zhang L, Shi Z, Liu D, Yang R, Shi D, Zhang G 2012 Nano Res. 5 258

    [42]

    Muñoz R, Gómez-Aleixandre C 2014 J. Phys. D: Appl. Phys. 47 045305

    [43]

    Lee S, Lee K, Zhong Z 2010 Nano Lett. 10 4702

  • [1] 高丰, 李欢庆, 宋卓, 赵宇宏. 三模晶体相场法研究应变诱导石墨烯晶界位错演化.  , 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [2] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真.  , 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [3] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响.  , 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [4] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟. 基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用.  , 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [5] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性.  , 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [6] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理.  , 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [7] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究.  , 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [8] 王文旭, 任衍彪, 张世超, 张临财, 亓敬波, 何小武. 类化学气相沉积法制备缺陷可控的三维石墨烯泡沫及其复合电极电化学性能.  , 2020, 69(14): 148101. doi: 10.7498/aps.69.20200454
    [9] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移.  , 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [10] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究.  , 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [11] 李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成. 铜基底上双层至多层石墨烯常压化学气相沉积法制备与机理探讨.  , 2017, 66(5): 058101. doi: 10.7498/aps.66.058101
    [12] 杨云畅, 武斌, 刘云圻. 双层石墨烯的化学气相沉积法制备及其光电器件.  , 2017, 66(21): 218101. doi: 10.7498/aps.66.218101
    [13] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀.  , 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [14] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究.  , 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [15] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态.  , 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [16] 张朝阳, 李中洋, 秦昌亮, 印洁, 张长桃, 毛卫平, 冯钦玉. 脉冲激光与电化学复合的应力刻蚀加工质量研究.  , 2013, 62(9): 094210. doi: 10.7498/aps.62.094210
    [17] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究.  , 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [18] 王金猛, 孔德鹏, 王丽莉. 大尺寸聚合物光纤面板制造新技术的初步研究.  , 2012, 61(5): 054216. doi: 10.7498/aps.61.054216
    [19] 郭铁英, 娄淑琴, 李宏雷, 简水生. 光子晶体光纤拉制中工艺参数的控制.  , 2009, 58(9): 6308-6315. doi: 10.7498/aps.58.6308
    [20] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响.  , 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
计量
  • 文章访问数:  7513
  • PDF下载量:  884
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-28
  • 修回日期:  2014-08-12
  • 刊出日期:  2014-12-05

/

返回文章
返回
Baidu
map