-
光学谐振腔由于其高Q值特性, 作为谐振式陀螺的核心元件, 有望实现谐振式陀螺的小型化、集成化, 但是非互易性噪声成为制约其精度提高的不利因素. 介绍了采用传统半导体工艺制备的盘型腔与熔融法拉制的锥形光纤组成的耦合系统. 当盘型腔在光纤锥区的不同位置进行耦合谐振时, 将输入输出正/反对调, 观察到输出透射谱发生偏差, 谐振频率、耦合效率以及Q值均发生变化, 即存在非互易性现象. 用Rsoft软件对锥形光纤倏逝场分布特性进行仿真, 理论分析了非互易性产生的原因. 以此可抑制谐振式光学陀螺应用中由锥形光纤与谐振腔组成的耦合系统产生的非互易性噪声.Optical resonator with high Q value can be used as a core component of the resonator optic gyro, with which the miniaturization and integration would be achieved. The coupling system composed of the disk cavity which is made by traditional micro-electro-mechanical system process and the tapered fiber which is drawn by melting method. When the disk cavity is coupled with the fiber at different places of the tapered region, by swapping input and output there is observed the deviation in the output transmission spectrum, also the resonant frequency, coupling efficiency and the Q value are changed, i.e., the non-reciprocity phenomenon appears. Then the distribution characteristics of the tapered fiber evanescent field are simulated with Rsoft software. The reason of the non-reciprocity is analyzed theoretically. According to the statistics of the output data when the disk cavity is coupled with the fiber at different places of the tapered region, it is found that the non-reciprocity can be eliminated effectively when the coupling happens at the center of the fiber tapered region. And this finding can be used to suppress the non-reciprocity noise produced by the coupling system composed of tapered fiber and resonant cavity in the resonator optic gyros application.
-
Keywords:
- optical resonator /
- tapered fiber /
- non-reciprocity /
- resonator optic gyros
[1] Li Q, Eftekhar A A, Sodagar M, Xia Z, Atabaki A H, Adibi A 2013 Opt. Express 21 18236
[2] Bo F, Huang S H, Ozdemir S K, Zhang G, Xu J, Yang L 2013 Opt. Phys. 25 1311
[3] Zhai Y, Chen S W, Ren G H 2010 Chin. Phys. Lett. 27 104203
[4] Zhang L B, Chen S W, Fei Y H, Cao T T, Cao Y M, Lei X 2013 Acta Phys. Sin. 62 194201 (in Chinese) [张利斌, 陈少武, 费永浩, 曹彤彤, 曹严梅, 雷勋 2013 62 194201]
[5] Lang J H 2011 Chin. Phys. Lett. 28 204210
[6] Matsko A B, Savchenkov A A, Yu N, Maleki L 2007 J. Opt. Soc. Am. B 24 1324
[7] Zhu J, Ozdemir S K, Xiao Y F, Li L, He L, Chen D R, Yang L 2010 Nat. Photon. 4 46
[8] Li J 2013 Ph. D. Dissertation (California: California Institute of Technology)
[9] Wang R M, Wang X P, Wu Z K, Yao X, Zhang Y Q, Zhang Y P 2014 Chin. Phys. B 23 054209
[10] DelHaye P, Herr T, Gavartin E, Gorodetsky M L, Holzwarth R, Kippenberg T J 2011 Phys. Rev. Lett. 107 063901
[11] Lee H, Chen T, Li J, Yang K Y, Jeon S, Painter O, Vahala K J 2012 Nat. Photon. 6 369
[12] Schell A W, Kaschke J, Fischer J, Henze R, Wolters J, Wegener M, Benson O 2013 Sci. Rep. 10 1038
[13] Monifi F, Odemir S K, Friedlein J, Yang L 2013 IEEE Photon. Tech. L 25 1458
[14] Yan Y Z, Zou C L, Yan S B, Sun F W, Ji Z, Liu J, Xiong J J 2011 Opt. Express 19 5753
[15] Niehusmann J, Vörckel A, Bolivar P H, Wahlbrink T, Henschel W, Kurz H 2004 Opt. Lett. 29 2861
[16] Cai M, Painter O, Vahala K J 2000 Phys. Rev. Lett. 85 74
[17] Li J, Ji Z, Yan Y Z, Liu Z, Liu J, Yan S B 2011 Nano Tech. 2 33 (in Chinese) [李杰, 吉喆, 严英占, 刘正, 刘俊, 闫树斌 2011 纳米科技 2 33]
[18] Wang K, Feng L, Wang J, Lei M 2013 Appl. Opt. 52 1481
[19] Hong L F, Zhang C X, Feng L S, Yu H Y, Lei M 2012 Chin. Phys. Lett. 29 14211
[20] Yan Y Z, Ji Z, Wang B H, Yan S B, Xiong J J, Ma J 2010 Chin. J. Laser 7 1789 (in Chinese) [严英占, 吉喆, 王宝花, 闫树斌, 熊继军,马骏 2010 中国激光 7 1789]
-
[1] Li Q, Eftekhar A A, Sodagar M, Xia Z, Atabaki A H, Adibi A 2013 Opt. Express 21 18236
[2] Bo F, Huang S H, Ozdemir S K, Zhang G, Xu J, Yang L 2013 Opt. Phys. 25 1311
[3] Zhai Y, Chen S W, Ren G H 2010 Chin. Phys. Lett. 27 104203
[4] Zhang L B, Chen S W, Fei Y H, Cao T T, Cao Y M, Lei X 2013 Acta Phys. Sin. 62 194201 (in Chinese) [张利斌, 陈少武, 费永浩, 曹彤彤, 曹严梅, 雷勋 2013 62 194201]
[5] Lang J H 2011 Chin. Phys. Lett. 28 204210
[6] Matsko A B, Savchenkov A A, Yu N, Maleki L 2007 J. Opt. Soc. Am. B 24 1324
[7] Zhu J, Ozdemir S K, Xiao Y F, Li L, He L, Chen D R, Yang L 2010 Nat. Photon. 4 46
[8] Li J 2013 Ph. D. Dissertation (California: California Institute of Technology)
[9] Wang R M, Wang X P, Wu Z K, Yao X, Zhang Y Q, Zhang Y P 2014 Chin. Phys. B 23 054209
[10] DelHaye P, Herr T, Gavartin E, Gorodetsky M L, Holzwarth R, Kippenberg T J 2011 Phys. Rev. Lett. 107 063901
[11] Lee H, Chen T, Li J, Yang K Y, Jeon S, Painter O, Vahala K J 2012 Nat. Photon. 6 369
[12] Schell A W, Kaschke J, Fischer J, Henze R, Wolters J, Wegener M, Benson O 2013 Sci. Rep. 10 1038
[13] Monifi F, Odemir S K, Friedlein J, Yang L 2013 IEEE Photon. Tech. L 25 1458
[14] Yan Y Z, Zou C L, Yan S B, Sun F W, Ji Z, Liu J, Xiong J J 2011 Opt. Express 19 5753
[15] Niehusmann J, Vörckel A, Bolivar P H, Wahlbrink T, Henschel W, Kurz H 2004 Opt. Lett. 29 2861
[16] Cai M, Painter O, Vahala K J 2000 Phys. Rev. Lett. 85 74
[17] Li J, Ji Z, Yan Y Z, Liu Z, Liu J, Yan S B 2011 Nano Tech. 2 33 (in Chinese) [李杰, 吉喆, 严英占, 刘正, 刘俊, 闫树斌 2011 纳米科技 2 33]
[18] Wang K, Feng L, Wang J, Lei M 2013 Appl. Opt. 52 1481
[19] Hong L F, Zhang C X, Feng L S, Yu H Y, Lei M 2012 Chin. Phys. Lett. 29 14211
[20] Yan Y Z, Ji Z, Wang B H, Yan S B, Xiong J J, Ma J 2010 Chin. J. Laser 7 1789 (in Chinese) [严英占, 吉喆, 王宝花, 闫树斌, 熊继军,马骏 2010 中国激光 7 1789]
计量
- 文章访问数: 6053
- PDF下载量: 944
- 被引次数: 0