搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锥形光纤激发盘腔光学模式互易性研究

郭泽彬 唐军 刘俊 王明焕 商成龙 雷龙海 薛晨阳 张文栋 闫树斌

引用本文:
Citation:

锥形光纤激发盘腔光学模式互易性研究

郭泽彬, 唐军, 刘俊, 王明焕, 商成龙, 雷龙海, 薛晨阳, 张文栋, 闫树斌

Optical model raciprocity of disk resonator excitated by tapered fiber

Guo Ze-Bin, Tang Jun, Liu Jun, Wang Ming-Huan, Shang Cheng-Long, Lei Long-Hai, Xue Chen-Yang, Zhang Wen-Dong, Yan Shu-Bin
PDF
导出引用
  • 光学谐振腔由于其高Q值特性, 作为谐振式陀螺的核心元件, 有望实现谐振式陀螺的小型化、集成化, 但是非互易性噪声成为制约其精度提高的不利因素. 介绍了采用传统半导体工艺制备的盘型腔与熔融法拉制的锥形光纤组成的耦合系统. 当盘型腔在光纤锥区的不同位置进行耦合谐振时, 将输入输出正/反对调, 观察到输出透射谱发生偏差, 谐振频率、耦合效率以及Q值均发生变化, 即存在非互易性现象. 用Rsoft软件对锥形光纤倏逝场分布特性进行仿真, 理论分析了非互易性产生的原因. 以此可抑制谐振式光学陀螺应用中由锥形光纤与谐振腔组成的耦合系统产生的非互易性噪声.
    Optical resonator with high Q value can be used as a core component of the resonator optic gyro, with which the miniaturization and integration would be achieved. The coupling system composed of the disk cavity which is made by traditional micro-electro-mechanical system process and the tapered fiber which is drawn by melting method. When the disk cavity is coupled with the fiber at different places of the tapered region, by swapping input and output there is observed the deviation in the output transmission spectrum, also the resonant frequency, coupling efficiency and the Q value are changed, i.e., the non-reciprocity phenomenon appears. Then the distribution characteristics of the tapered fiber evanescent field are simulated with Rsoft software. The reason of the non-reciprocity is analyzed theoretically. According to the statistics of the output data when the disk cavity is coupled with the fiber at different places of the tapered region, it is found that the non-reciprocity can be eliminated effectively when the coupling happens at the center of the fiber tapered region. And this finding can be used to suppress the non-reciprocity noise produced by the coupling system composed of tapered fiber and resonant cavity in the resonator optic gyros application.
    • 基金项目: 国家自然科学基金重点项目(批准号:91123036)、国家杰出青年科学基金(批准号:51225504)、国家自然科学基金(批准号:91123016,61178058,61275166)、国家重点基础研究发展计划前期研究专项项目(批准号:2012CB723404)和山西省青年学术带头人支持项目资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 91123036), the National Science Fund for Distinguished Young Scholars of China (Grant No. 51225504), the National Natural Science Foundation of China (Grant Nos. 91123016, 61178058, 61275166), China and the Nationa Basic Research Program of China (Grant No. 2012CB723404), and the Shanxi Provincial Foundation for Leaders of Disciplines in Science, China.
    [1]

    Li Q, Eftekhar A A, Sodagar M, Xia Z, Atabaki A H, Adibi A 2013 Opt. Express 21 18236

    [2]

    Bo F, Huang S H, Ozdemir S K, Zhang G, Xu J, Yang L 2013 Opt. Phys. 25 1311

    [3]

    Zhai Y, Chen S W, Ren G H 2010 Chin. Phys. Lett. 27 104203

    [4]

    Zhang L B, Chen S W, Fei Y H, Cao T T, Cao Y M, Lei X 2013 Acta Phys. Sin. 62 194201 (in Chinese) [张利斌, 陈少武, 费永浩, 曹彤彤, 曹严梅, 雷勋 2013 62 194201]

    [5]

    Lang J H 2011 Chin. Phys. Lett. 28 204210

    [6]

    Matsko A B, Savchenkov A A, Yu N, Maleki L 2007 J. Opt. Soc. Am. B 24 1324

    [7]

    Zhu J, Ozdemir S K, Xiao Y F, Li L, He L, Chen D R, Yang L 2010 Nat. Photon. 4 46

    [8]

    Li J 2013 Ph. D. Dissertation (California: California Institute of Technology)

    [9]

    Wang R M, Wang X P, Wu Z K, Yao X, Zhang Y Q, Zhang Y P 2014 Chin. Phys. B 23 054209

    [10]

    DelHaye P, Herr T, Gavartin E, Gorodetsky M L, Holzwarth R, Kippenberg T J 2011 Phys. Rev. Lett. 107 063901

    [11]

    Lee H, Chen T, Li J, Yang K Y, Jeon S, Painter O, Vahala K J 2012 Nat. Photon. 6 369

    [12]

    Schell A W, Kaschke J, Fischer J, Henze R, Wolters J, Wegener M, Benson O 2013 Sci. Rep. 10 1038

    [13]

    Monifi F, Odemir S K, Friedlein J, Yang L 2013 IEEE Photon. Tech. L 25 1458

    [14]

    Yan Y Z, Zou C L, Yan S B, Sun F W, Ji Z, Liu J, Xiong J J 2011 Opt. Express 19 5753

    [15]

    Niehusmann J, Vörckel A, Bolivar P H, Wahlbrink T, Henschel W, Kurz H 2004 Opt. Lett. 29 2861

    [16]

    Cai M, Painter O, Vahala K J 2000 Phys. Rev. Lett. 85 74

    [17]

    Li J, Ji Z, Yan Y Z, Liu Z, Liu J, Yan S B 2011 Nano Tech. 2 33 (in Chinese) [李杰, 吉喆, 严英占, 刘正, 刘俊, 闫树斌 2011 纳米科技 2 33]

    [18]

    Wang K, Feng L, Wang J, Lei M 2013 Appl. Opt. 52 1481

    [19]

    Hong L F, Zhang C X, Feng L S, Yu H Y, Lei M 2012 Chin. Phys. Lett. 29 14211

    [20]

    Yan Y Z, Ji Z, Wang B H, Yan S B, Xiong J J, Ma J 2010 Chin. J. Laser 7 1789 (in Chinese) [严英占, 吉喆, 王宝花, 闫树斌, 熊继军,马骏 2010 中国激光 7 1789]

  • [1]

    Li Q, Eftekhar A A, Sodagar M, Xia Z, Atabaki A H, Adibi A 2013 Opt. Express 21 18236

    [2]

    Bo F, Huang S H, Ozdemir S K, Zhang G, Xu J, Yang L 2013 Opt. Phys. 25 1311

    [3]

    Zhai Y, Chen S W, Ren G H 2010 Chin. Phys. Lett. 27 104203

    [4]

    Zhang L B, Chen S W, Fei Y H, Cao T T, Cao Y M, Lei X 2013 Acta Phys. Sin. 62 194201 (in Chinese) [张利斌, 陈少武, 费永浩, 曹彤彤, 曹严梅, 雷勋 2013 62 194201]

    [5]

    Lang J H 2011 Chin. Phys. Lett. 28 204210

    [6]

    Matsko A B, Savchenkov A A, Yu N, Maleki L 2007 J. Opt. Soc. Am. B 24 1324

    [7]

    Zhu J, Ozdemir S K, Xiao Y F, Li L, He L, Chen D R, Yang L 2010 Nat. Photon. 4 46

    [8]

    Li J 2013 Ph. D. Dissertation (California: California Institute of Technology)

    [9]

    Wang R M, Wang X P, Wu Z K, Yao X, Zhang Y Q, Zhang Y P 2014 Chin. Phys. B 23 054209

    [10]

    DelHaye P, Herr T, Gavartin E, Gorodetsky M L, Holzwarth R, Kippenberg T J 2011 Phys. Rev. Lett. 107 063901

    [11]

    Lee H, Chen T, Li J, Yang K Y, Jeon S, Painter O, Vahala K J 2012 Nat. Photon. 6 369

    [12]

    Schell A W, Kaschke J, Fischer J, Henze R, Wolters J, Wegener M, Benson O 2013 Sci. Rep. 10 1038

    [13]

    Monifi F, Odemir S K, Friedlein J, Yang L 2013 IEEE Photon. Tech. L 25 1458

    [14]

    Yan Y Z, Zou C L, Yan S B, Sun F W, Ji Z, Liu J, Xiong J J 2011 Opt. Express 19 5753

    [15]

    Niehusmann J, Vörckel A, Bolivar P H, Wahlbrink T, Henschel W, Kurz H 2004 Opt. Lett. 29 2861

    [16]

    Cai M, Painter O, Vahala K J 2000 Phys. Rev. Lett. 85 74

    [17]

    Li J, Ji Z, Yan Y Z, Liu Z, Liu J, Yan S B 2011 Nano Tech. 2 33 (in Chinese) [李杰, 吉喆, 严英占, 刘正, 刘俊, 闫树斌 2011 纳米科技 2 33]

    [18]

    Wang K, Feng L, Wang J, Lei M 2013 Appl. Opt. 52 1481

    [19]

    Hong L F, Zhang C X, Feng L S, Yu H Y, Lei M 2012 Chin. Phys. Lett. 29 14211

    [20]

    Yan Y Z, Ji Z, Wang B H, Yan S B, Xiong J J, Ma J 2010 Chin. J. Laser 7 1789 (in Chinese) [严英占, 吉喆, 王宝花, 闫树斌, 熊继军,马骏 2010 中国激光 7 1789]

  • [1] 王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才. 腔增强热里德伯原子光谱.  , 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [2] 窦琳, 麻艳娜, 顾兆麒, 刘家彤, 谷付星. 基于半导体纳米线/锥形微光纤探针的被动式近场光学扫描成像.  , 2022, 71(4): 044201. doi: 10.7498/aps.71.20211810
    [3] 胡裕栋, 宋丽军, 王晨曦, 张沛, 周静, 李刚, 张鹏飞, 张天才. 基于纳米光纤的光学法布里-珀罗谐振腔腔内模场的表征.  , 2022, 71(23): 234203. doi: 10.7498/aps.71.20221538
    [4] 姚能智, 王浩, 王斌, 王学生. 基于变换流体动力学的文丘里效应旋聚器的设计与非互易特性研究.  , 2022, 71(10): 104701. doi: 10.7498/aps.71.20212361
    [5] 窦琳, 麻艳娜, 顾兆麒, 刘家彤, 谷付星. 基于半导体纳米线/锥形微光纤探针的被动式近场光学扫描成像.  , 2021, (): . doi: 10.7498/aps.70.20211810
    [6] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性.  , 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [7] 王雅君, 王俊萍, 张文慧, 李瑞鑫, 田龙, 郑耀辉. 光学谐振腔的传输特性.  , 2021, 70(20): 204202. doi: 10.7498/aps.70.20210234
    [8] 李航天, 王智, 王慧莹, 崔粲, 李智勇. 磁光平面波导的单向传播特性.  , 2020, 69(7): 074206. doi: 10.7498/aps.69.20191795
    [9] 宋丽军, 张鹏飞, 王鑫, 王晨曦, 李刚, 张天才. 光纤环形谐振腔的频率锁定及其特性.  , 2019, 68(7): 074204. doi: 10.7498/aps.68.20182296
    [10] 王慧莹, 王智, 崔粲, 李航天, 李强, 詹翔空, 王健, 吴重庆. 非互易旋电材料硅基矩形波导的色散特性研究.  , 2019, 68(15): 154203. doi: 10.7498/aps.68.20190109
    [11] 祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤. 基于十字连通形环形谐振腔金属-介质-金属波导的折射率传感器和滤波器.  , 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [12] 王维, 高社生, 孟阳. 型谐振腔结构的光学透射特性.  , 2017, 66(1): 017301. doi: 10.7498/aps.66.017301
    [13] 刘俊, 张天恩, 张伟, 雷龙海, 薛晨阳, 张文栋, 唐军. 平面环形谐振腔微光学陀螺结构设计与优化.  , 2015, 64(10): 107802. doi: 10.7498/aps.64.107802
    [14] 刘建华, 唐军, 商成龙, 张伟, 毕钰, 翟陈婷, 郭泽彬, 王明焕, 郭浩, 钱坤, 刘俊, 薛晨阳. 面向谐振式微光学陀螺应用的球形谐振腔DQ乘积优化.  , 2015, 64(15): 154206. doi: 10.7498/aps.64.154206
    [15] 郭建增, 刘铁根, 牛志峰, 任晓明. 不同振荡放大比MOPA型化学激光器的数值模拟.  , 2013, 62(7): 074203. doi: 10.7498/aps.62.074203
    [16] 张 蕾, 蔡阳健, 陆璇辉. 一种新空心光束的理论及实验研究.  , 2004, 53(6): 1777-1781. doi: 10.7498/aps.53.1777
    [17] 李先枢. 光学无源谐振腔的矩阵理论(柱坐标)(Ⅰ)——自洽场矩阵方程.  , 1983, 32(8): 990-1001. doi: 10.7498/aps.32.990
    [18] 李先枢, 高燕球, 陈志恬, 冯镇业. 光学无源谐振腔的矩阵理论(柱坐标)(Ⅱ)——轴对称稳定光学无源谐振腔的计算.  , 1983, 32(8): 1002-1016. doi: 10.7498/aps.32.1002
    [19] 刘建邦. 共焦不稳定光学谐振腔的解析解.  , 1980, 29(9): 1231-1236. doi: 10.7498/aps.29.1231
    [20] 叶碧青, 马忠林. 激光谐振腔内光学元件的热光效应.  , 1980, 29(6): 756-763. doi: 10.7498/aps.29.756
计量
  • 文章访问数:  6053
  • PDF下载量:  944
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-24
  • 修回日期:  2014-07-25
  • 刊出日期:  2014-11-05

/

返回文章
返回
Baidu
map