搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有N型缓冲层REBULF Super Junction LDMOS

段宝兴 曹震 袁小宁 杨银堂

引用本文:
Citation:

具有N型缓冲层REBULF Super Junction LDMOS

段宝兴, 曹震, 袁小宁, 杨银堂

New REBULF super junction LDMOS with the N type buffered layer

Duan Bao-Xing, Cao Zhen, Yuan Xiao-Ning, Yang Yin-Tang
PDF
导出引用
  • 针对功率集成电路对低损耗LDMOS (lateral double-diffused MOSFET)类器件的要求,在N型缓冲层super junction LDMOS (buffered SJ-LDMOS)结构基础上, 提出了一种具有N型缓冲层的REBULF (reduced BULk field) super junction LDMOS结构. 这种结构不但消除了N沟道SJ-LDMOS由于P型衬底带来的衬底辅助耗尽效应问题, 使super junction的N区和P区电荷完全补偿, 而且同时利用REBULF的部分N型缓冲层电场调制效应, 在表面电场分布中引入新的电场峰而使横向表面电场分布均匀, 提高了器件的击穿电压. 通过优化部分N型埋层的位置和参数, 利用仿真软件ISE分析表明, 新型REBULF SJ-LDMOS 的击穿电压较一般LDMOS提高了49%左右, 较文献提出的buffered SJ-LDMOS结构提高了30%左右.
    In this paper, a new REBULF (reduced BULk field) SJ-LDMOS (lateral double-diffused MOSFET) is proposed with the N type buffered layer based on the buffered SJ-LDMOS for the low loss of LDMOS used in the power integrated circuits. In this structure, the problem of the substrate-assisted depletion, produced due to the P-type substrate for the N-channel SJ-LDMOS, is eliminated by the N-type buffered layer. The charges for the N-type and P-type pillars are depleted completely. Moreover, a new electric field peak is introduced into the surface electric field distribution, which makes the lateral surface electric field uniform. The breakdown voltage is improved for the REBULF SJ-LDMOS in virtue of the ISE simulation results. By optimizing the location and parameters of the N-type buried layer, the breakdown voltage of REBULF SJ-LDMOS is increased by about 49% compared with that of the conventional LDMOS, and improved by about 30% compared with that of the buffered SJ-LDMOS.
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB339900)、国家自然科学基金重点项目(批准号:61234006)和国家自然科学基金重点项目(批准号:61334002)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB339900), the Key Program of the National Natural Science Foundation of China (Grant Nos. 61234006, 61334002).
    [1]

    Kyungho L, Haeung J, Byunghee C, Joonhee C, Pang Y S, Jinwoo M, Susanna K 2013 Proceedings of the 25th International Power Semiconductor Devices and ICs Kanazawa, May 26-30, 2013 p163

    [2]

    Yoshiaki T, Katakura H, Takatoshi O, Masanobu I, Hitoshi S 2013 Proceedings of the 25th International Power Semiconductor Devices and ICs Kanazawa, May 26-30, 2013 p145

    [3]

    Chang H, Jung J, Kim M H, Lee E K, Jang D E, Park J S, Jung J H, Yoon C J, Bea S R, Park C H 2012 Proceedings of the 24th International Power Semiconductor Devices and ICs Bruges, Belgium, June 3-7, 2012 p217

    [4]

    Duan B X, Yang Y T 2012 Chin. Phys. B 21 057201

    [5]

    Zhang X J, Yang Y T, Duan B X, Chen B, Chai C C, Song K 2012 Chin. Phys. B 21 017201

    [6]

    Zhang X J, Yang Y T, Duan B X, Chai C C, Song K, Chen B 2012 Chin. Phys. B 21 037303

    [7]

    Sameh G, Khalil N, Salama C A T 2003 IEEE Trans. Electron Dev. 50 1385

    [8]

    Sameh G, Khalil N, Li Z H, Salama C A T 2004 IEEE Trans. Electron Dev. 51 1185

    [9]

    Park Y, Salama C T 2005 Proceedings of the 17th International Power Semiconductor Devices and ICs Santa Barbara, California, May 26-30, 2005 p163

    [10]

    Zhang B, Chen L, Wu J, Li Z J 2005 International Conference on Communications, Circuits and System Hongkong, May 16-20, 2005 p1399

    [11]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Dev. Lett. 30 305

    [12]

    Duan B X, Yang Y T 2011 Micro Nano Lett. 6 881

    [13]

    Duan B X, Zhang B, Li Z J 2007 Chin. J. Semicond. 28 166

    [14]

    Chen J B, Zhang B, Li Z J 2008 IEEE Electron Dev. Lett. 29 645

    [15]

    Duan B X, Zhang B, Li Z J 2005 Solid-State Electron. 49 1965

    [16]

    Duan B X, Zhang B, Li Z J 2006 IEEE Electron Dev. Lett. 27 377

    [17]

    Duan B X, Zhang B, Li Z J 2007 Chin. Phys. Lett. 24 1342

    [18]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Dev. Lett. 30 1329

    [19]

    Duan B X, Yang Y T, Zhang B, Li Z J 2008 Chin. J. Semicond. 29 677

    [20]

    Duan B X, Yang Y T 2011 IEEE Trans. Electron Dev. 58 2057

    [21]

    Duan B X, Yang Y T, Zhang B 2010 Solid-State Electron. 54 685

    [22]

    Duan B X, Yang Y T, Chen J 2012 Acta Phys. Sin. 61 247302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 61 247302]

    [23]

    Duan B X, Yang Y T, Chen J 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 61 227302]

    [24]

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302 (in Chinese) [段宝兴, 杨银堂 2014 63 057302]

    [25]

    ISE TCAD Manuals, release 10.0

    [26]

    Chen X B, Wang X, Johnny K O S 2000 IEEE Trans. Electron Dev. 47 1280

    [27]

    Chen X B, Johnny K O S 2001 IEEE Trans. Electron Dev. 48 344

    [28]

    Appels J A, Collet M G, Hart P A H, Vaes H M J 1980 Philips J. Res. 35 1

  • [1]

    Kyungho L, Haeung J, Byunghee C, Joonhee C, Pang Y S, Jinwoo M, Susanna K 2013 Proceedings of the 25th International Power Semiconductor Devices and ICs Kanazawa, May 26-30, 2013 p163

    [2]

    Yoshiaki T, Katakura H, Takatoshi O, Masanobu I, Hitoshi S 2013 Proceedings of the 25th International Power Semiconductor Devices and ICs Kanazawa, May 26-30, 2013 p145

    [3]

    Chang H, Jung J, Kim M H, Lee E K, Jang D E, Park J S, Jung J H, Yoon C J, Bea S R, Park C H 2012 Proceedings of the 24th International Power Semiconductor Devices and ICs Bruges, Belgium, June 3-7, 2012 p217

    [4]

    Duan B X, Yang Y T 2012 Chin. Phys. B 21 057201

    [5]

    Zhang X J, Yang Y T, Duan B X, Chen B, Chai C C, Song K 2012 Chin. Phys. B 21 017201

    [6]

    Zhang X J, Yang Y T, Duan B X, Chai C C, Song K, Chen B 2012 Chin. Phys. B 21 037303

    [7]

    Sameh G, Khalil N, Salama C A T 2003 IEEE Trans. Electron Dev. 50 1385

    [8]

    Sameh G, Khalil N, Li Z H, Salama C A T 2004 IEEE Trans. Electron Dev. 51 1185

    [9]

    Park Y, Salama C T 2005 Proceedings of the 17th International Power Semiconductor Devices and ICs Santa Barbara, California, May 26-30, 2005 p163

    [10]

    Zhang B, Chen L, Wu J, Li Z J 2005 International Conference on Communications, Circuits and System Hongkong, May 16-20, 2005 p1399

    [11]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Dev. Lett. 30 305

    [12]

    Duan B X, Yang Y T 2011 Micro Nano Lett. 6 881

    [13]

    Duan B X, Zhang B, Li Z J 2007 Chin. J. Semicond. 28 166

    [14]

    Chen J B, Zhang B, Li Z J 2008 IEEE Electron Dev. Lett. 29 645

    [15]

    Duan B X, Zhang B, Li Z J 2005 Solid-State Electron. 49 1965

    [16]

    Duan B X, Zhang B, Li Z J 2006 IEEE Electron Dev. Lett. 27 377

    [17]

    Duan B X, Zhang B, Li Z J 2007 Chin. Phys. Lett. 24 1342

    [18]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Dev. Lett. 30 1329

    [19]

    Duan B X, Yang Y T, Zhang B, Li Z J 2008 Chin. J. Semicond. 29 677

    [20]

    Duan B X, Yang Y T 2011 IEEE Trans. Electron Dev. 58 2057

    [21]

    Duan B X, Yang Y T, Zhang B 2010 Solid-State Electron. 54 685

    [22]

    Duan B X, Yang Y T, Chen J 2012 Acta Phys. Sin. 61 247302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 61 247302]

    [23]

    Duan B X, Yang Y T, Chen J 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 61 227302]

    [24]

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302 (in Chinese) [段宝兴, 杨银堂 2014 63 057302]

    [25]

    ISE TCAD Manuals, release 10.0

    [26]

    Chen X B, Wang X, Johnny K O S 2000 IEEE Trans. Electron Dev. 47 1280

    [27]

    Chen X B, Johnny K O S 2001 IEEE Trans. Electron Dev. 48 344

    [28]

    Appels J A, Collet M G, Hart P A H, Vaes H M J 1980 Philips J. Res. 35 1

  • [1] 刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃. 复合漏电模型建立及阶梯场板GaN肖特基势垒二极管设计.  , 2022, 71(5): 057301. doi: 10.7498/aps.71.20211917
    [2] 徐大林, 王玉琦, 李新化, 史同飞. 电荷耦合效应对高耐压沟槽栅极超势垒整流器击穿电压的影响.  , 2021, 70(6): 067301. doi: 10.7498/aps.70.20201558
    [3] 杨初平, 耿屹楠, 王捷, 刘兴南, 时振刚. 高气压氦气平行极板击穿电压及场致发射的影响.  , 2021, 70(13): 135102. doi: 10.7498/aps.70.20210086
    [4] 赵逸涵, 段宝兴, 袁嵩, 吕建梅, 杨银堂. 具有纵向辅助耗尽衬底层的新型横向双扩散金属氧化物半导体场效应晶体管.  , 2017, 66(7): 077302. doi: 10.7498/aps.66.077302
    [5] 岳姗, 刘兴男, 时振刚. 高压氦气平行极板击穿电压实验研究.  , 2015, 64(10): 105101. doi: 10.7498/aps.64.105101
    [6] 袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaNHEMTs器件实验研究.  , 2015, 64(23): 237302. doi: 10.7498/aps.64.237302
    [7] 曹震, 段宝兴, 袁小宁, 杨银堂. 具有半绝缘多晶硅完全三维超结横向功率器件.  , 2015, 64(18): 187303. doi: 10.7498/aps.64.187303
    [8] 石艳梅, 刘继芝, 姚素英, 丁燕红, 张卫华, 代红丽. 具有L型源极场板的双槽绝缘体上硅高压器件新结构.  , 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [9] 石艳梅, 刘继芝, 姚素英, 丁燕红. 具有纵向漏极场板的低导通电阻绝缘体上硅横向双扩散金属氧化物半导体器件新结构.  , 2014, 63(10): 107302. doi: 10.7498/aps.63.107302
    [10] 刘微粒, 邹晓兵, 付洋洋, 王鹏, 王新新. 基于克尔效应的真空绝缘子表面电场在线测量.  , 2014, 63(9): 095207. doi: 10.7498/aps.63.095207
    [11] 段宝兴, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaN HEMTs击穿特性分析.  , 2014, 63(5): 057302. doi: 10.7498/aps.63.057302
    [12] 段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂. 新型缓冲层分区电场调制横向双扩散超结功率器件.  , 2014, 63(24): 247301. doi: 10.7498/aps.63.247301
    [13] 王骁玮, 罗小蓉, 尹超, 范远航, 周坤, 范叶, 蔡金勇, 罗尹春, 张波, 李肇基. 高k介质电导增强SOI LDMOS机理与优化设计.  , 2013, 62(23): 237301. doi: 10.7498/aps.62.237301
    [14] 段宝兴, 杨银堂, 陈敬. F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析.  , 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [15] 黄茜, 张德坤, 熊绍珍, 赵颖, 张晓丹. 降低表面等离子激元寄生吸收损失的途径研究.  , 2012, 61(21): 217301. doi: 10.7498/aps.61.217301
    [16] 杨银堂, 耿振海, 段宝兴, 贾护军, 余涔, 任丽丽. 具有部分超结的新型SiC SBD特性分析.  , 2010, 59(1): 566-570. doi: 10.7498/aps.59.566
    [17] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析.  , 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [18] 李 琦, 李肇基, 张 波. 表面注入P-top区double RESURF功率器件表面电场模型.  , 2007, 56(11): 6660-6665. doi: 10.7498/aps.56.6660
    [19] 赵 毅, 万星拱. 0.18μm CMOS工艺栅极氧化膜可靠性的衬底和工艺依存性.  , 2006, 55(6): 3003-3006. doi: 10.7498/aps.55.3003
    [20] 方 健, 乔 明, 李肇基. 电荷非平衡super junction结构电场分布.  , 2006, 55(7): 3656-3663. doi: 10.7498/aps.55.3656
计量
  • 文章访问数:  5526
  • PDF下载量:  521
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-30
  • 修回日期:  2014-07-10
  • 刊出日期:  2014-11-05

/

返回文章
返回
Baidu
map