搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于振动弛豫理论提高光抽运太赫兹激光器输出功率的研究

张会云 刘蒙 张玉萍 何志红 申端龙 吴志心 尹贻恒 李德华

引用本文:
Citation:

基于振动弛豫理论提高光抽运太赫兹激光器输出功率的研究

张会云, 刘蒙, 张玉萍, 何志红, 申端龙, 吴志心, 尹贻恒, 李德华

Improvement of the output power of optical pumping THz lasers based on the theory of vibrational relaxation

Zhang Hui-Yun, Liu Meng, Zhang Yu-Ping, He Zhi-Hong, Shen Duan-Long, Wu Zhi-Xin, Yin Yi-Heng, Li De-Hua
PDF
导出引用
  • 以半经典密度矩阵理论和分子振动弛豫理论为基础,研究添加适当比例缓冲气体与适当减小波导芯径对光抽运太赫兹激光器输出光强的影响. 计算结果表明,加入适当比例缓冲气体或适当减小波导的芯径均能提高太赫兹激光的输出光强;同时优化两个参数能进一步提高抽运激光能量转化为太赫兹激光能量的效率,延长工作腔中的有效激活区,延缓抽运饱和效应的出现,提高太赫兹激光输出光强. 该研究对提高光抽运太赫兹激光器的能量转化效率、提高光抽运太赫兹激光器的输出功率及实现光抽运太赫兹激光器的小型化有重要的指导意义.
    Based on the semiclassical density matrix theory and vibrational relaxation theory, the present paper studies the influences on optical pumping THz lasers output power due to adding an appropriate proportion of buffer gas and appropriately reducing the waveguide core diameter. Results prove that adding appropriate proportion of buffer gas or appropriately reducing the waveguide core diameter can increase the output of light intensity of THz laser. Optimizing the two parameters at the same time can further improve the efficiency of pumping laser energy into THz laser energy, extend the effective activation area of the working cavity, put off the appearance of the pumping saturation effect, and increase the output power of the THz lasers. This research may have a guiding significance for the THz optical pumping laser in improving energy conversion efficiency, and increasing the output power so as to bring about the miniaturization of THz optical pumping laser.
    • 基金项目: 国家自然科学基金(批准号:61001018)、山东省自然科学基金(批准号:ZR2011FM009,ZR2012FM011)、山东科技大学杰出青年科学基金(批准号:2010KYJQ103)、山东科技大学科研创新团队支持计划项目(批准号:2012KYTD103)、山东省高等学校科技计划项目(批准号:J11LG20)资助、青岛市科技计划项目(批准号:11-2-4-4-(8)-jch)、青岛经济技术开发区重点科技计划项目(批准号:2013-1-64)和山东科技大学科技创新基金(批准号:YCB120173)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61001018), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2011FM009, ZR2012FM011), the Research Fund of Shandong University of Science and Technology (SDUST), China (Grant No. 2010KYJQ103), the SDUST Research Fund (Grant No. 2012KYTD103), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J11LG20), the Qingdao Science & Technology Project, China (Grant No. 11-2-4-4-(8)-jch), the Qingdao Economic & Technical Development Zone Science & Technology Project, China (Grant No. 2013-1-64), and the Shandong University of Science and Technology Foundation, China (Grant No. YCB120173).
    [1]

    Jiu Z X, Zuo D L, Miao L, Qi C C, Cheng Z H 2010 Chin. Phys. Lett. 27 24211

    [2]

    Jiu Z X, Zuo D L, Miao L, Cheng Z H 2010 Journal of Infrared Millimeter and Terahertz Waves 31 1422

    [3]

    Miao L, Zuo D L, Jiu Z X, Cheng Z H 2011 High Power Laser and Particle Beams 23 2565 (in Chinese) [苗亮, 左都罗, 纠智先, 程祖海 2011 强激光与粒子束 23 2565]

    [4]

    Mueller E R, Henschke R, Robotham W E 2007 Appl. Opt. 46 4907

    [5]

    Federici J F, Schulkin B, Huanget F 2005 Semicond. Sci. Technol. 20 S266

    [6]

    Fu S Y, Tian Z S, Yi F L J 2008 Harbin Institute of Technology 40 435 (in Chinese) [付石友, 田兆硕, 衣福龙 2008 哈尔滨工业大学学报 40 435]

    [7]

    Wu L, Ling F R, Liu J S 2009 Laser & Optoelectronics Progress 46 29 (in Chinese) [吴亮, 凌福日, 刘劲松 2009 激光与光电子学进展 46 29]

    [8]

    Thomas A, Detemple 1976 IEEE J. Quant. Electron. 12 40

    [9]

    Behn R, Kjelberg I, Morgan P D, Okada T, Siegrist M R 1983J. Appl. Phys. 54 2995

    [10]

    Behn R, Dupertuis R, Kjelberg M A, Krug I, Salito P, Siegrist S 1985 IEEE J. Quant. Electron. 21 1278

    [11]

    Hodges D T, Tucker J R, Hartwick T S 1976 Infrared Phys. 16 175

    [12]

    Mansfield D K, Horlbeck E, Bennett C L, Chouinard R 1985 International Journal of Infrared and Millimeter Waves 6 867

    [13]

    Chang T Y, Lin C 1976 J. Opt. Soc. Am. 66 362

    [14]

    He Z H, Yao J Q, Shi H F, Huang X, Luo X Z, Jiang S J, Wang P 2007 Acta. Phys. Sin. 56 5802 (in Chinese) [何志红, 姚建铨, 时华锋, 黄晓, 罗锡璋, 江绍基, 王鹏 2007 56 5802]

    [15]

    He Z H, Yao J Q, Shi H F, Huang X, Luo X Z, Jiang S J, Li J R, Wang P 2007 Acta. Phys. Sin. 56 6451 (in Chinese) [何志红, 姚建铨, 时华锋, 黄晓, 罗锡璋, 江绍基, 李建荣, 王鹏 2007 56 6451]

    [16]

    Zhang P, Jiang A J, Chen M N, Luo X Z, Zhang X 2004 Journal of Optoelectronics·Laser 15 1040 (in Chinese) [张萍, 蒋爱军, 陈曼娜, 罗锡璋, 张迅 2004 光电子·激光 15 1040]

    [17]

    Qin J Y, Zheng X S, Luo X Z, Huang X, Lin Y K 1998 IEEE Journal of Quantum Electronics 34 32

    [18]

    Liu Y, Xu J, Lai J Q, Xu X, Shen F, Wei Y Y, Huang M Z, Tang T, Gong Y B 2012 Chin. Phys. B 21 074202

    [19]

    Xie H Y, Wang L, Zhao L J, Zhu H L, Wang W 2007 Chin. Phys. 16 1459

    [20]

    Chang T Y, Lin C 1976 J. Opt Soc Am. 66 362

    [21]

    Redon M, Gastaud C, Fourrier M 1979 IEEE J. Q. E 15 412

    [22]

    Lawandy N M, Koepf G A 1980 Opt. Lett. 5 366

    [23]

    Schwartz R N, Slawsky Z I, Herzfeld K F 1952 J. Cherm. Phys. 20 1591

    [24]

    Frank I, Tanczos, 1956 J. Cherm. Phys. 25 439

    [25]

    Dickens P G, Ripamonti A 1961 Trans. Faraday Soc. 57 735

  • [1]

    Jiu Z X, Zuo D L, Miao L, Qi C C, Cheng Z H 2010 Chin. Phys. Lett. 27 24211

    [2]

    Jiu Z X, Zuo D L, Miao L, Cheng Z H 2010 Journal of Infrared Millimeter and Terahertz Waves 31 1422

    [3]

    Miao L, Zuo D L, Jiu Z X, Cheng Z H 2011 High Power Laser and Particle Beams 23 2565 (in Chinese) [苗亮, 左都罗, 纠智先, 程祖海 2011 强激光与粒子束 23 2565]

    [4]

    Mueller E R, Henschke R, Robotham W E 2007 Appl. Opt. 46 4907

    [5]

    Federici J F, Schulkin B, Huanget F 2005 Semicond. Sci. Technol. 20 S266

    [6]

    Fu S Y, Tian Z S, Yi F L J 2008 Harbin Institute of Technology 40 435 (in Chinese) [付石友, 田兆硕, 衣福龙 2008 哈尔滨工业大学学报 40 435]

    [7]

    Wu L, Ling F R, Liu J S 2009 Laser & Optoelectronics Progress 46 29 (in Chinese) [吴亮, 凌福日, 刘劲松 2009 激光与光电子学进展 46 29]

    [8]

    Thomas A, Detemple 1976 IEEE J. Quant. Electron. 12 40

    [9]

    Behn R, Kjelberg I, Morgan P D, Okada T, Siegrist M R 1983J. Appl. Phys. 54 2995

    [10]

    Behn R, Dupertuis R, Kjelberg M A, Krug I, Salito P, Siegrist S 1985 IEEE J. Quant. Electron. 21 1278

    [11]

    Hodges D T, Tucker J R, Hartwick T S 1976 Infrared Phys. 16 175

    [12]

    Mansfield D K, Horlbeck E, Bennett C L, Chouinard R 1985 International Journal of Infrared and Millimeter Waves 6 867

    [13]

    Chang T Y, Lin C 1976 J. Opt. Soc. Am. 66 362

    [14]

    He Z H, Yao J Q, Shi H F, Huang X, Luo X Z, Jiang S J, Wang P 2007 Acta. Phys. Sin. 56 5802 (in Chinese) [何志红, 姚建铨, 时华锋, 黄晓, 罗锡璋, 江绍基, 王鹏 2007 56 5802]

    [15]

    He Z H, Yao J Q, Shi H F, Huang X, Luo X Z, Jiang S J, Li J R, Wang P 2007 Acta. Phys. Sin. 56 6451 (in Chinese) [何志红, 姚建铨, 时华锋, 黄晓, 罗锡璋, 江绍基, 李建荣, 王鹏 2007 56 6451]

    [16]

    Zhang P, Jiang A J, Chen M N, Luo X Z, Zhang X 2004 Journal of Optoelectronics·Laser 15 1040 (in Chinese) [张萍, 蒋爱军, 陈曼娜, 罗锡璋, 张迅 2004 光电子·激光 15 1040]

    [17]

    Qin J Y, Zheng X S, Luo X Z, Huang X, Lin Y K 1998 IEEE Journal of Quantum Electronics 34 32

    [18]

    Liu Y, Xu J, Lai J Q, Xu X, Shen F, Wei Y Y, Huang M Z, Tang T, Gong Y B 2012 Chin. Phys. B 21 074202

    [19]

    Xie H Y, Wang L, Zhao L J, Zhu H L, Wang W 2007 Chin. Phys. 16 1459

    [20]

    Chang T Y, Lin C 1976 J. Opt Soc Am. 66 362

    [21]

    Redon M, Gastaud C, Fourrier M 1979 IEEE J. Q. E 15 412

    [22]

    Lawandy N M, Koepf G A 1980 Opt. Lett. 5 366

    [23]

    Schwartz R N, Slawsky Z I, Herzfeld K F 1952 J. Cherm. Phys. 20 1591

    [24]

    Frank I, Tanczos, 1956 J. Cherm. Phys. 25 439

    [25]

    Dickens P G, Ripamonti A 1961 Trans. Faraday Soc. 57 735

  • [1] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究.  , 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [2] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线.  , 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [3] 惠战强, 高黎明, 刘瑞华, 韩冬冬, 汪伟. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器.  , 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [4] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性.  , 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [5] 郭良浩, 王少萌, 杨利霞, 王凯程, 马佳路, 周俊, 宫玉彬. 太赫兹波在神经细胞中传输的弱谐振效应.  , 2021, 70(24): 240301. doi: 10.7498/aps.70.20211677
    [6] 惠战强. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器.  , 2021, (): . doi: 10.7498/aps.70.20211650
    [7] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用.  , 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [8] 杨煜林, 白乐乐, 张露露, 何军, 温馨, 王军民. 铷原子系综自旋噪声谱实验研究.  , 2020, 69(23): 233201. doi: 10.7498/aps.69.20201103
    [9] 张尧, 孙帅, 闫忠宝, 张果, 史伟, 盛泉, 房强, 张钧翔, 史朝督, 张贵忠, 姚建铨. 太赫兹双芯反谐振光纤的设计及其耦合特性.  , 2020, 69(20): 208703. doi: 10.7498/aps.69.20200662
    [10] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [11] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器.  , 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [12] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元.  , 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [13] 张镜水, 孔令琴, 董立泉, 刘明, 左剑, 张存林, 赵跃进. 太赫兹互补金属氧化物半导体场效应管探测器理论模型中扩散效应研究.  , 2017, 66(12): 127302. doi: 10.7498/aps.66.127302
    [14] 汪静丽, 刘洋, 钟凯. 基于领结型多孔光纤的双芯太赫兹偏振分束器.  , 2017, 66(2): 024209. doi: 10.7498/aps.66.024209
    [15] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究.  , 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [16] 李珊珊, 常胜江, 张昊, 白晋军, 刘伟伟. 基于悬浮式双芯多孔光纤的太赫兹偏振分离器.  , 2014, 63(11): 110706. doi: 10.7498/aps.63.110706
    [17] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构.  , 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [18] 姜子伟, 白晋军, 侯宇, 王湘晖, 常胜江. 太赫兹双空芯光纤定向耦合器.  , 2013, 62(2): 028702. doi: 10.7498/aps.62.028702
    [19] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究.  , 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [20] 白晋军, 王昌辉, 侯宇, 范飞, 常胜江. 太赫兹双芯光子带隙光纤定向耦合器.  , 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
计量
  • 文章访问数:  6673
  • PDF下载量:  486
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-29
  • 修回日期:  2013-10-25
  • 刊出日期:  2014-01-05

/

返回文章
返回
Baidu
map