搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子辐照下聚合物介质内部放电模型研究

全荣辉 韩建伟 张振龙

引用本文:
Citation:

电子辐照下聚合物介质内部放电模型研究

全荣辉, 韩建伟, 张振龙

Macroscopic model of internal discharging in polymer under electron beam irradiation

Quan Rong-Hui, Han Jian-Wei, Zhang Zhen-Long
PDF
导出引用
  • 空间电子辐照环境中,聚合物介质充放电现象是威胁航天器安全的重要因素. 传统航天器介质充放电模型仅能分析材料充电过程,缺乏对放电前后介质电位残余情况与放电脉冲强弱的评估. 本文通过引入介质放电电导率,在数值积分 充电模型基础上建立同时描述航天器介质内部充电和放电过程的新模型,并将模型计算结果与实验数据进行比较,验证了所构建的模型. 模型分析结果表明,聚合物介质放电残余电位与放电电流脉冲宽度随着样品电阻率的增加而增大,放电电流强度随着临界电场强度和充电时间的增加而增强,其增幅随着辐照电子束流强度的增加而增大.
    Internal charging effect and discharging effect in a dielectric material are one of the key factors threatening the spacecraft safety. Most of the spacecraft charging models could calculate only the voltage variation and electric field distribution in the spacecraft internal charging process, without estimating the consequence of discharging, such as the magnitude of voltage drop and discharging current. In this article, we present a combined model which could calculate both the charging effect and the discharging effect on polymer. The model is verified by the experimental results, and it shows that the residual voltage after discharging and the pulse width of discharging current grow with the increase of polymer resistivity. The magnitude of discharging current is determined by the breakdown electrical field.
    • 基金项目: 国家自然科学基金(批准号:41004083)和南京航空航天大学科研启动基金(批准号:101156YAH13009)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41004083) and the Scientific Research Foundation of Nanjing University of Aeronautics and Astronautics, China (Grant No. 101156YAH13009).
    [1]

    Lanzerotti L J, Breglia C 1998 Adv. Space Res. 22 79

    [2]

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907 (in Chinese) [黄建国, 韩建伟 2010 59 2907]

    [3]

    Vampola A L 2000 IEEE Trans. Plas. Sci. 28 1831

    [4]

    Gao X, Yan S S, Xue Y X, Li K, Li D M, Wang Y, Wang Y F, Fang Z Z 2009 Chin. Phys. B 18 5015

    [5]

    Violet M D, Frederickson A R 1993 IEEE Trans. Nucl. Sci. 40 1512

    [6]

    Miyake H, Honjoh M, Maruta S, Tanaka Y, Takada T, Koga K, Matsumoto H, Goka T, Dirassen B, Levy L, Payan D 2007 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Vancouver, Canada, October 14–17, 2007 p763

    [7]

    Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2009 58 1205]

    [8]

    Gross B, Sessler G M, West J E 1974 J. Appl. Phys. 45 2841

    [9]

    Sessler G M 1992 IEEE Trans. Electr. Insul. 27 961

    [10]

    Leal Ferreira G F, Figueiredo M T 2003 IEEE Trans. Dielectr. Electr. Insul. 10 137

    [11]

    Bogorad A L, Likar J L, Voorhees C R, Herschitz R 2006 IEEE Trans. Nucl. Sci. 53 3607

    [12]

    Zhang H B, Li W Q, Cao M 2012 Chin. Phys. Lett. 29 047901

    [13]

    Sessler G M, Figueiredo M T, Leal Ferreira G F 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192

    [14]

    Min Daomin, Mengu Cho, Khan A R, Li S T 2012 IEEE Trans. Dielectr. Electr. Insul. 19 600

    [15]

    Toyoda K, Masui H, Muranaka T, Mengu Cho, Urabe T, Mirua T, Kawakita S, Gonohe Y, Kikuchi T 2008 IEEE Trans. Plas. Sci. 36 2413

    [16]

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 58 684]

    [17]

    Wang J F, Zheng X Q, Li S T, Bai J J 2011 J. Beijing Univ. Aeronaut. Astronaut. 37 180 (in Chinese) [王金锋, 郑晓泉, 李盛涛, 白婧婧 2011 北京航空航天大学学报 37 180]

    [18]

    Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401 (in Chinese) [李盛涛, 李国倡, 闵道敏, 赵妮 2013 62 059401]

    [19]

    Edin H, Forssen C 2005 Femlab Conference Oslo, Norway, October 13, 2005 p3

    [20]

    Insoo Jun, Garrett H B, Kim W, Minow J I 2008 IEEE Trans. Plasma Sci. 36 2467

    [21]

    Quan R H, Han J W, Huang J G 2007 Acta Phys. Sin. 56 6642 (in Chinese) [全荣辉, 韩建伟, 黄建国 2007 56 6642]

    [22]

    Xie S H, Huang X Q 1993 Chin. Phys. Lett. 10 425

    [23]

    Aduev B P, Aluker É D, Shvaïko V N 1997 Phys. Solid State 39 1784

    [24]

    Han J W, Zhang Z L, Huang J G, Quan R H, Li X Y 2007 Spacecraft Environment Engineering 24 47 (in Chinese) [韩建伟, 张振龙, 黄建国, 全荣辉, 李小银 2007 航天器环境工程 24 47]

    [25]

    Wang Y, Zhang Z L, Quan R H 2012 Spacecraft Environ. Engineer. 29 425 (in Chinese) [王燕, 张振龙, 全荣辉 2012 航天器环境工程 29 425]

    [26]

    Kadish A, Maier W B, Robiscoe R T 1991 IEEE Trans. Plasma Sci. 19 697

  • [1]

    Lanzerotti L J, Breglia C 1998 Adv. Space Res. 22 79

    [2]

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907 (in Chinese) [黄建国, 韩建伟 2010 59 2907]

    [3]

    Vampola A L 2000 IEEE Trans. Plas. Sci. 28 1831

    [4]

    Gao X, Yan S S, Xue Y X, Li K, Li D M, Wang Y, Wang Y F, Fang Z Z 2009 Chin. Phys. B 18 5015

    [5]

    Violet M D, Frederickson A R 1993 IEEE Trans. Nucl. Sci. 40 1512

    [6]

    Miyake H, Honjoh M, Maruta S, Tanaka Y, Takada T, Koga K, Matsumoto H, Goka T, Dirassen B, Levy L, Payan D 2007 IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Vancouver, Canada, October 14–17, 2007 p763

    [7]

    Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2009 58 1205]

    [8]

    Gross B, Sessler G M, West J E 1974 J. Appl. Phys. 45 2841

    [9]

    Sessler G M 1992 IEEE Trans. Electr. Insul. 27 961

    [10]

    Leal Ferreira G F, Figueiredo M T 2003 IEEE Trans. Dielectr. Electr. Insul. 10 137

    [11]

    Bogorad A L, Likar J L, Voorhees C R, Herschitz R 2006 IEEE Trans. Nucl. Sci. 53 3607

    [12]

    Zhang H B, Li W Q, Cao M 2012 Chin. Phys. Lett. 29 047901

    [13]

    Sessler G M, Figueiredo M T, Leal Ferreira G F 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192

    [14]

    Min Daomin, Mengu Cho, Khan A R, Li S T 2012 IEEE Trans. Dielectr. Electr. Insul. 19 600

    [15]

    Toyoda K, Masui H, Muranaka T, Mengu Cho, Urabe T, Mirua T, Kawakita S, Gonohe Y, Kikuchi T 2008 IEEE Trans. Plas. Sci. 36 2413

    [16]

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 58 684]

    [17]

    Wang J F, Zheng X Q, Li S T, Bai J J 2011 J. Beijing Univ. Aeronaut. Astronaut. 37 180 (in Chinese) [王金锋, 郑晓泉, 李盛涛, 白婧婧 2011 北京航空航天大学学报 37 180]

    [18]

    Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401 (in Chinese) [李盛涛, 李国倡, 闵道敏, 赵妮 2013 62 059401]

    [19]

    Edin H, Forssen C 2005 Femlab Conference Oslo, Norway, October 13, 2005 p3

    [20]

    Insoo Jun, Garrett H B, Kim W, Minow J I 2008 IEEE Trans. Plasma Sci. 36 2467

    [21]

    Quan R H, Han J W, Huang J G 2007 Acta Phys. Sin. 56 6642 (in Chinese) [全荣辉, 韩建伟, 黄建国 2007 56 6642]

    [22]

    Xie S H, Huang X Q 1993 Chin. Phys. Lett. 10 425

    [23]

    Aduev B P, Aluker É D, Shvaïko V N 1997 Phys. Solid State 39 1784

    [24]

    Han J W, Zhang Z L, Huang J G, Quan R H, Li X Y 2007 Spacecraft Environment Engineering 24 47 (in Chinese) [韩建伟, 张振龙, 黄建国, 全荣辉, 李小银 2007 航天器环境工程 24 47]

    [25]

    Wang Y, Zhang Z L, Quan R H 2012 Spacecraft Environ. Engineer. 29 425 (in Chinese) [王燕, 张振龙, 全荣辉 2012 航天器环境工程 29 425]

    [26]

    Kadish A, Maier W B, Robiscoe R T 1991 IEEE Trans. Plasma Sci. 19 697

  • [1] 付瑜亮, 张思远, 孙安邦, 马祖福, 王亚楠. 磁阵列微波放电中和器的电子引出机制.  , 2024, 73(11): 115203. doi: 10.7498/aps.73.20240273
    [2] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应.  , 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [3] 高旭东, 杨得草, 魏雯静, 李公平. 电子束对ZnO和TiO2辐照损伤的模拟计算.  , 2021, 70(23): 234101. doi: 10.7498/aps.70.20211223
    [4] 张延清, 齐春华, 周佳明, 刘超铭, 马国亮, 蔡勖升, 王天琦, 霍明学. 倒置四结(IMM4J)太阳电池中InGaAs(1.0 eV)和InGaAs(0.7 eV)子电池高能电子辐照退火效应.  , 2020, 69(22): 228802. doi: 10.7498/aps.69.20200557
    [5] 原青云, 孙永卫, 张希军. 基于电荷守恒定律的航天器内带电三维仿真简化模型.  , 2019, 68(19): 195201. doi: 10.7498/aps.68.20190631
    [6] 原青云, 王松. 一种新的航天器外露介质充电模型.  , 2018, 67(19): 195201. doi: 10.7498/aps.67.20180532
    [7] 孙安邦, 李晗蔚, 许鹏, 张冠军. 流注放电低温等离子体中电子输运系数计算的蒙特卡罗模型.  , 2017, 66(19): 195101. doi: 10.7498/aps.66.195101
    [8] 宋明辉, 王笃祥, 毕京锋, 陈文浚, 李明阳, 李森林, 刘冠洲, 吴超瑜. 空间用倒装三结太阳能电池及其抗辐射性能研究.  , 2017, 66(18): 188801. doi: 10.7498/aps.66.188801
    [9] 袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山. 分子动力学模拟钠硼硅酸盐玻璃电子辐照诱导的结构演化效应.  , 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [10] 封国宝, 曹猛, 崔万照, 李军, 刘纯亮, 王芳. 电子辐照电介质样品带电泄放弛豫特性研究.  , 2017, 66(6): 067901. doi: 10.7498/aps.66.067901
    [11] 马国亮, 李兴冀, 杨剑群, 刘超铭, 田丰, 侯春风. 电子辐照LDPE/MWCNTs复合材料的熔融与结晶行为.  , 2016, 65(20): 208101. doi: 10.7498/aps.65.208101
    [12] 马国亮, 杨剑群, 李兴冀, 刘超铭, 侯春风. 电子辐照聚乙烯/碳纳米管拉伸变形机理.  , 2016, 65(17): 178104. doi: 10.7498/aps.65.178104
    [13] 曹鹤飞, 刘尚合, 孙永卫, 原青云. 航天器内部孤立导体表面带电面积效应研究.  , 2013, 62(14): 149402. doi: 10.7498/aps.62.149402
    [14] 王凯悦, 李志宏, 高凯, 朱玉梅. 电子辐照金刚石的光致发光研究.  , 2012, 61(9): 097803. doi: 10.7498/aps.61.097803
    [15] 黄建国, 韩建伟. 航天器内部充电效应及典型事例分析.  , 2010, 59(4): 2907-2913. doi: 10.7498/aps.59.2907
    [16] 胡建民, 吴宜勇, 钱勇, 杨德庄, 何世禹. GaInP/GaAs/Ge三结太阳电池的电子辐照损伤效应.  , 2009, 58(7): 5051-5056. doi: 10.7498/aps.58.5051
    [17] 王 博, 赵有文, 董志远, 邓爱红, 苗杉杉, 杨 俊. 高温退火后非掺杂磷化铟材料的电子辐照缺陷.  , 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [18] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅰ)——物理模型与理论方法.  , 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
    [19] 王震遐, 李学鹏, 余礼平, 马余刚, 何国伟, 胡岗, 陈一, 段晓峰. 电子辐照诱发固态相变导致的氮化硼纳米结构生长.  , 2002, 51(3): 620-624. doi: 10.7498/aps.51.620
    [20] 应用于金属蒸气激光器的磁约束溅射放电理论模型.  , 1997, 46(8): 1479-1486. doi: 10.7498/aps.46.1479
计量
  • 文章访问数:  6071
  • PDF下载量:  441
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-30
  • 修回日期:  2013-09-18
  • 刊出日期:  2013-12-05

/

返回文章
返回
Baidu
map