-
本文为研究1 MeV电子辐照倒置四结(IMM4J)太阳电池InGaAs(1.0 eV)和 InGaAs(0.7 eV)关键子电池的退火效应, 将辐照后的两种子电池在60—180 ℃温度范围累计退火180 min, 并对不同退火温度、退火时间下的两种子电池进行了光IV测试、暗IV测试和光谱响应测试. 实验结果表明两种子电池的开路电压Voc、短路电流Isc和最大输出功率Pmax随着退火时间的延长逐渐恢复, 温度越高, 恢复程度越大. 在相同的退火条件下, InGaAs(1.0 eV)子电池的恢复程度比InGaAs(0.7 eV)子电池小. 本文通过对暗特性曲线进行双指数模型拟合, 得到不同退火条件下两种子电池的串联电阻Rs、并联电阻Rsh、扩散电流Is1、复合电流Is2. 结果表明在退火过程中两种子电池的Rsh逐渐增大, Rs, Is1和Is2逐渐减小. 温度越高, 退火时间越长, 恢复程度越大. 在退火60 min后两种子电池的Voc, Isc和Pmax恢复程度均可达到整体恢复程度的85%以上. InGaAs(1.0 eV)子电池的Is1和Is2的恢复程度远大于InGaAs(0.7 eV). 本文建立了短路电流密度Jsc和缺陷浓度N的等效模型, 以此计算得到InGaAs(1.0 eV)和InGaAs(0.7 eV)两种子电池的热退火激活能分别为0.38 eV和0.26 eV.In this work, thermal annealing effects of InGaAs (1.0 eV) and InGaAs (0.7 eV) sub-cells for inverted metamorphic four junction (IMM4J) solar cells after being irradiated by 1 MeV electrons are investigated by using light I-V characteristic, dark I-V characteristic and spectral response. Annealing temperature range is 60–180 ℃ and annealing time is 0-180 min. The results indicate that the open-circuit voltage Voc, short-circuit current Isc, and maximum power Pmax of two sub-cells are gradually recovered with annealing time increasing, and the rate of recovery increases with annealing temperature increasing. Besides, the recovery rate of InGaAs (1.0 eV) sub-cell is less than that of InGaAs (0.7 eV) sub-cell under the same annealing temperature and time. Double exponential model is used to fit the dark I-V curve for the key parameters (the serial resistant Rs, the parallel resistant Rsh, the diffusion current Is1 and the recombination current Is2). It is found that Rs, Is1 and Is2 of two sub-cells decrease gradually and Rsh increases during annealing and the rate of recovery increases with annealing temperature rising. However, the recovery of Is1 and Is2 of InGaAs(1.0 eV) are much greater than that of InGaAs(0.7 eV). The equivalent model between short-circuit current density (Jsc) and defect concentration (N) induced by irradiation and annealing is established. N changes follow the first reaction kinetics, and the rate constant follows the Arrhenius equation with the annealing temperature. Therefore, the thermal annealing activation energy of InGaAs(1.0 eV) and InGaAs(0.7 eV) sub-cells are 0.38 eV and 0.26 eV, respectively. These efforts will contribute to the IMM4J solar cells, in particular, to space-based applications.
-
Keywords:
- inverted metamorphic four junction solar cells /
- electron irradiation /
- annealing effects /
- activation energy of thermal annealing
[1] Asim N, Sopian K, Ahmadi S, Saeedfar K, Alghoul M A, Saadatian O, Zaidi S H 2012 Renewable Sustainable Energy Rev. 16 5834Google Scholar
[2] Imaizumi M, Kawakita S, Sumita T, Takamoto T, Ohshima T Yamaguchi M 2005 Prog. Photovoltaics 13 529Google Scholar
[3] France R M, Geisz J F, García I, Steiner M A, McMahon W E, Friedman D J, Moriarty T E, Osterwald C, Ward J S, Duda A, Young M, Olavarria W J 2015 IEEE J. Photovoltaics 5 432Google Scholar
[4] 宋明辉, 王笃祥, 毕京锋, 陈文浚, 李明阳, 李森林, 刘冠洲, 吴超瑜 2017 66 188801Google Scholar
Song M H, Wang D X, Bi J F, Chen W J, Li M Y, Li S L, Liu G Z, Wu C Y 2017 Acta Phys. Sin. 66 188801Google Scholar
[5] Tatavarti R, Wibowo A, Martin G, Tuminello F, Youtsey C, Hillier G, Pan N 2010 IEEE 35 th Photovoltaic Specialists Conference, Honolulu, Hawaii, USA, June 20−25, 2010 p2125
[6] 卢建娅, 谭明, 杨文献, 陆书龙, 张玮, 黄健 2016 半导体光电 37 688
Lu J Y, Tan M, Yang W X, Lu S L, Zhang W, Huang J 2016 Semicond. Optoelectron. 37 688
[7] Boisvert J, Law D, King R, Rehder E, Chiu P, Bhusari D, Fetzer C, Liu X, Hong W, Mesropian S, Woo R, Edmondson K, Cotal H, Krut D, Singer S, Wierman S, Karam N H 2013 IEEE 39th Photovoltaic Specialists Conference Tampa, Florida, USA, Jun 16−21, 2013 p2790
[8] Zhang Y Q, Huo M X, Wu Y Y, Sun C Y, Zhao H J, Geng H B, Wang S, Liu R B, Sun Q 2017 Chin. Phys. B 26 088801Google Scholar
[9] Loo R, Knechtli R C, Kamath G S 1978 IEEE 13th Photovoltaic Specialists Conference Washington DC, USA, Jun 5, 1978 p562
[10] Loo R Y, Kamath G S, Li S S 1990 IEEE Trans. Electron Devices 37 485Google Scholar
[11] Loo R Y, Kamath G S 1980 IEEE 14th Photovoltaic Specialists Conference San Diego, California, USA, January 7−10, 1980 p1087
[12] Heinbockel J H, Conway E J, Walker G H 1980 IEEE 14th Photovoltaic Specialists Conference San Diego, California, USA, January 7−10, 1980 p1085
[13] Walker G H, Conway E J 1978 J. Electrochem. Soc. 125 676Google Scholar
[14] 齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬 2015 64 108802Google Scholar
Qi J H, Hu J M, Sheng Y H, Wu Y Y, Xu J W, Wang Y Y, Yang X M, Zhang Z R, Zhou Y 2015 Acta Phys. Sin. 64 108802Google Scholar
[15] Xiang X B, Du W H, Liao X B, Chang X L 2001 Chin. J. Semicond. 22 710
[16] Yamaguchi M, Okuda T, Taylor S J, Takamoto T, Ikeda E, Kurita H 1997 Appl. Phys. Lett. 70 1566Google Scholar
[17] Sasaki T, Arafune K, Metzger W, Romero M J, Jones K, Tassim M A, Ohshita Y, Yamaguchi M 2009 Sol. Energy Mater. Sol. Cells 93 936Google Scholar
[18] Angelis N D, Bourgoin J C, Takamoto T, Khan A, Yamaguchi M 2001 Sol. Energy Mater. Sol. Cells 66 495Google Scholar
[19] Bourgoin J C, Zazoui M 2002 Semicond. Sci. Technol. 17 453Google Scholar
[20] Bourgoin J C, Angelis N D 2001 Sol. Energy Mater. Sol. Cells 66 467Google Scholar
[21] Amekura H, Kishimoto N, Saito T 1995 J. Appl. Phys. 77 4984Google Scholar
[22] Kaminski A, Marchand J J, Fave A, Laugier A 1997 IEEE 26th Photovoltaic Specialists Conference Anaheim, California, USA, September 29−October 3, 1997 p203
-
图 4 AFM测试1 MeV电子辐照InGaAs子电池前后表面形貌及横向剖面对比图 (a)未辐照子电池; (b)辐照1 × 1015 cm–2后子电池; (c)横向剖面图
Fig. 4. Surface morphology and cross section of InGaAs sub-cell before and after 1 MeV electron irradiation by AFM: (a) The unirradiated sub-cell; (b) the sub-cell after 1 × 1015 cm–2 electron irradiation; (c) the cross section comparison.
表 1 1 MeV辐照前后InGaAs(1.0 eV)子电池的Voc, Isc和Pmax
Table 1. Voc, Isc and Pmax of InGaAs(1.0 eV) sub-cells before and after electron irradiated.
InGaAs (1.0 eV) Voc/V Isc/mA Pmax/mW 未辐照 0.5089 18.25 7.30 辐照后 0.3093 11.57 3.56 剩余率 60.8% 63.4% 48.8% 表 2 1 MeV辐照前后InGaAs (0.7 eV)子电池的Voc, Isc和Pmax
Table 2. Voc, Isc and Pmax of InGaAs (0.7 eV) sub-cells before and after electron irradiated.
InGaAs (0.7 eV) Voc/V Isc/mA Pmax/mW 未辐照 0.2529 11.660 1.940 辐照后 0.1428 6.950 0.653 剩余率 56.5% 59.6% 33.7% 表 3 辐照前后InGaAs (1.0 eV)子电池Rs, Rsh, Is1和Is2
Table 3. Rs, Rsh, Is1 and Is2 of InGaAs (1.0 eV) sub-cells before and after electron irradiated.
InGaAs (1.0 eV) Rs/Ω Rsh/Ω Is1/A Is2/A 未辐照 1.5 4.3 × 104 3.6 × 10–7 4.2 × 10–7 辐照后 6.2 5.3 × 103 6.4 × 10–5 6.5 × 10–5 剩余率 4.13% 0.123% 178% 155% 表 4 辐照前后InGaAs (0.7 eV)子电池的Rs, Rsh, Is1和Is2
Table 4. Rs, Rsh, Is1 and Is2 of InGaAs (0.7 eV) sub-cells before and after electron irradiated.
InGaAs (0.7 eV) Rs/Ω Rsh/Ω Is1/A Is2/A 未辐照 2.9 1.3 × 104 2.7 × 10–5 3.3 × 10–5 辐照后 7.5 1.4 × 103 1.4 × 10–4 1.9 × 10–4 剩余率 2.59% 0.108% 5.19% 5.76% 表 5 辐照及热退火过程中InGaAs (1.0 eV)子电池Jsc变化
Table 5. Jsc of InGaAs (1.0 eV) sub-cell in irradiation and thermal annealing.
InGaAs (1.0 eV) 退火温度 未辐照Jsc/mA) 退火时间 Jsc/min·mA–1 0 3 5 10 15 30 60 120 180 60 ℃ 13.57 10.26 10.26 10.28 10.29 10.31 10.38 10.41 10.48 10.53 90 ℃ 13.31 10.19 10.21 10.23 10.28 10.30 10.34 10.39 10.41 10.46 120 ℃ 13.75 10.41 10.46 10.49 10.57 10.65 10.78 10.79 10.81 10.84 150 ℃ 13.51 10.31 10.43 10.59 10.84 11.07 11.68 11.73 11.83 11.98 180 ℃ 13.55 10.38 10.72 10.96 11.46 11.90 12.50 12.67 12.85 12.88 表 6 辐照及热退火过程中InGaAs (0.7 eV)子电池Jsc变化
Table 6. Jsc of InGaAs (0.7 eV) sub-cell in irradiation and thermal annealing.
InGaAs (0.7 eV) 退火温度 未辐照 Jsc/mA 退火时间 Jsc/min·mA–1 0 3 5 10 15 30 60 120 180 60 ℃ 8.17 6.27 6.27 6.27 6.31 6.32 6.36 6.40 6.45 6.47 90 ℃ 8.33 6.46 6.47 6.48 6.53 6.53 6.55 6.59 6.63 6.67 120 ℃ 8.28 6.19 6.21 6.22 6.24 6.28 6.33 6.35 6.42 6.44 150 ℃ 8.24 6.15 6.18 6.21 6.25 6.29 6.45 6.71 6.79 6.82 180 ℃ 8.25 6.2 6.25 6.3 6.44 6.51 6.8 7.34 7.59 7.69 表 7 不同退火温度下InGaAs (1.0 eV)和InGaAs (0.7 eV)子电池缺陷浓度变化系数α拟合值
Table 7. Fitting value of the variation defect concentration coefficient(α) of InGaAs sub-cell at different annealing temperatures.
退火温度 α[InGaAs (1.0 eV)/s–1] α[InGaAs (0.7 eV)/s–1] 60 ℃ 1.74 × 10–3 1.47 × 10–3 90 ℃ 4.09 × 10–3 2.43 × 10–3 120 ℃ 7.33 × 10–3 4.70 × 10–3 150 ℃ 2.52 × 10–2 7.38 × 10–3 180 ℃ 5.72 × 10–2 1.82 × 10–2 -
[1] Asim N, Sopian K, Ahmadi S, Saeedfar K, Alghoul M A, Saadatian O, Zaidi S H 2012 Renewable Sustainable Energy Rev. 16 5834Google Scholar
[2] Imaizumi M, Kawakita S, Sumita T, Takamoto T, Ohshima T Yamaguchi M 2005 Prog. Photovoltaics 13 529Google Scholar
[3] France R M, Geisz J F, García I, Steiner M A, McMahon W E, Friedman D J, Moriarty T E, Osterwald C, Ward J S, Duda A, Young M, Olavarria W J 2015 IEEE J. Photovoltaics 5 432Google Scholar
[4] 宋明辉, 王笃祥, 毕京锋, 陈文浚, 李明阳, 李森林, 刘冠洲, 吴超瑜 2017 66 188801Google Scholar
Song M H, Wang D X, Bi J F, Chen W J, Li M Y, Li S L, Liu G Z, Wu C Y 2017 Acta Phys. Sin. 66 188801Google Scholar
[5] Tatavarti R, Wibowo A, Martin G, Tuminello F, Youtsey C, Hillier G, Pan N 2010 IEEE 35 th Photovoltaic Specialists Conference, Honolulu, Hawaii, USA, June 20−25, 2010 p2125
[6] 卢建娅, 谭明, 杨文献, 陆书龙, 张玮, 黄健 2016 半导体光电 37 688
Lu J Y, Tan M, Yang W X, Lu S L, Zhang W, Huang J 2016 Semicond. Optoelectron. 37 688
[7] Boisvert J, Law D, King R, Rehder E, Chiu P, Bhusari D, Fetzer C, Liu X, Hong W, Mesropian S, Woo R, Edmondson K, Cotal H, Krut D, Singer S, Wierman S, Karam N H 2013 IEEE 39th Photovoltaic Specialists Conference Tampa, Florida, USA, Jun 16−21, 2013 p2790
[8] Zhang Y Q, Huo M X, Wu Y Y, Sun C Y, Zhao H J, Geng H B, Wang S, Liu R B, Sun Q 2017 Chin. Phys. B 26 088801Google Scholar
[9] Loo R, Knechtli R C, Kamath G S 1978 IEEE 13th Photovoltaic Specialists Conference Washington DC, USA, Jun 5, 1978 p562
[10] Loo R Y, Kamath G S, Li S S 1990 IEEE Trans. Electron Devices 37 485Google Scholar
[11] Loo R Y, Kamath G S 1980 IEEE 14th Photovoltaic Specialists Conference San Diego, California, USA, January 7−10, 1980 p1087
[12] Heinbockel J H, Conway E J, Walker G H 1980 IEEE 14th Photovoltaic Specialists Conference San Diego, California, USA, January 7−10, 1980 p1085
[13] Walker G H, Conway E J 1978 J. Electrochem. Soc. 125 676Google Scholar
[14] 齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬 2015 64 108802Google Scholar
Qi J H, Hu J M, Sheng Y H, Wu Y Y, Xu J W, Wang Y Y, Yang X M, Zhang Z R, Zhou Y 2015 Acta Phys. Sin. 64 108802Google Scholar
[15] Xiang X B, Du W H, Liao X B, Chang X L 2001 Chin. J. Semicond. 22 710
[16] Yamaguchi M, Okuda T, Taylor S J, Takamoto T, Ikeda E, Kurita H 1997 Appl. Phys. Lett. 70 1566Google Scholar
[17] Sasaki T, Arafune K, Metzger W, Romero M J, Jones K, Tassim M A, Ohshita Y, Yamaguchi M 2009 Sol. Energy Mater. Sol. Cells 93 936Google Scholar
[18] Angelis N D, Bourgoin J C, Takamoto T, Khan A, Yamaguchi M 2001 Sol. Energy Mater. Sol. Cells 66 495Google Scholar
[19] Bourgoin J C, Zazoui M 2002 Semicond. Sci. Technol. 17 453Google Scholar
[20] Bourgoin J C, Angelis N D 2001 Sol. Energy Mater. Sol. Cells 66 467Google Scholar
[21] Amekura H, Kishimoto N, Saito T 1995 J. Appl. Phys. 77 4984Google Scholar
[22] Kaminski A, Marchand J J, Fave A, Laugier A 1997 IEEE 26th Photovoltaic Specialists Conference Anaheim, California, USA, September 29−October 3, 1997 p203
计量
- 文章访问数: 6368
- PDF下载量: 96
- 被引次数: 0