搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于圆台结构的超宽带极化不敏感太赫兹吸收器

莫漫漫 文岐业 陈智 杨青慧 李胜 荆玉兰 张怀武

引用本文:
Citation:

基于圆台结构的超宽带极化不敏感太赫兹吸收器

莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武

A polarization-independent and ultra-broadband terahertz metamaterial absorber studied based on circular-truncated cone structure

Mo Man-Man, Wen Qi-Ye, Chen Zhi, Yang Qing-Hui, Li Sheng, Jing Yu-Lan, Zhang Huai-Wu
PDF
导出引用
  • 本文提出一种基于圆台形吸收单元的超宽带、极化不敏感的超材料太赫兹吸收器. 该超材料吸收器采用金属薄膜金和介质层二氧化硅交替叠加的多层结构. 采用商业软件CST Studio Suite 2009时域求解器计算了其在0–10 THz波段内的吸收率A(ω),在2–10 THz之间实现了对入射太赫兹波的超宽频带强吸收. 仿真结果表明,由于其圆台形单元结构,在器件垂直方向上形成一系列不同尺寸的微型吸收器,产生了吸收频点相连的多频吸收峰. 利用不同吸收峰的耦合叠加效应,获得超过8 THz的超宽带太赫兹波吸收,吸收强度达到92.3%以上. 这一结构具有超宽带强吸收,360°极化不敏感以及易于加工等优越特性,因而在太赫兹波探测器、光谱成像以及隐身技术方面具有潜在的应用.
    In this paper, we present an ultra-broadband polarization-independent terahertz (THz) metamaterial absorber (MA) made of circular truncated cone metamaterial. Absorptivity higher than 92.3% at normal incidence is obtained in a wide range of frequencies from 2 to 10 THz. We employ an isotropic metamaterial cell which consists of alternating layers of Au metal and SiO2 dielectric spacer. The absorption spectra of the THz MA are calculated using the finite-difference time domain (FDTD) method within the CST Microwave Studio 2009 in the frequency range of 0–10 THz. Our broadband absorber can be regarded as a group of micro-absorbers perpendicularly stacked and their absorption peaks coupling to each other to form an ultra broadband absorption. This THz MA has the advantages of broadband, polarization-independent and fabrication facility, and thus can be widely applied in THz wave harvesting, detection, spectrum imaging and stealthy technology.
    • 基金项目: 国家自然科学基金重点项目(批准号:61131005)、教育部科学技术研究重大项目(批准号:313013)、国家高技术研究发展计划(863计划)(批准号:2011AA010204)、教育部新世纪优秀人才资助计划(批准号:NCET-11-0068)、四川省杰出青年学术技术带头人计划(批准号:2011JQ0001)、高校博士点专项科研基金(批准号:20110185130002)、中央高校基本科研业务费(批准号:ZYGX2010J034)和中国工程物理研究院太赫兹科学技术基金(批准号:CAEPTHZ201207)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61131005), the Key Project of Chinese Ministry of Education of China (Grant No. 313013), the National High Technology Research and Development Program 863 (Grant No. 2011AA010204), the "New Century Excellent Talent Foundation" of China (Grant No. NCET-11-0068), Sichuan Youth S & T foundation, China (Grant No. 2011JQ0001), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110185130002), the Fundamental Research Funds for the Central Universities of China (Grant No. ZYGX2010J034), and the CAEP THz Science and Technology Foundation (Grant No. CAEPTHZ201207).
    [1]

    Caloz C, Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach (New Jersey: John Wiley & Sons, Inc.) pp2,3

    [2]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [3]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [4]

    Tao H, Padilla W J, Zhang X, Averitt R D 2011 IEEE J. Sel. Top. Quantum Electron. 17 92

    [5]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [6]

    Avitzour Y, Urzhumov Y A, Shvetset G 2009 Phys. Rev. 79 045131

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103

    [9]

    Diem M, Koschny T, Soukoulis C M 2009 Phys. Rev. B 79 33101

    [10]

    Liu X L, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403

    [11]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342

    [12]

    Noor A, Hu Z 2010 Iet. Microw. Antenna P 4 667

    [13]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [14]

    Lu L, Qu S B, Ma H, Yu F, Xia S, Xu Z, Bai P 2013 Acta Phys. Sin. 62 104102 (in Chinese) [鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏 2013 62 104102]

    [15]

    Lu L, Qu S B, Xia S, Xu Z, Ma H, Wang J F, Yu F 2013 Acta Phys. Sin. 62 013701 (in Chinese) [鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐 2013 62 013701]

    [16]

    Grant J, Ma Y, Saha S, Lok L B, Khalid A, Cumming D R S 2011 Opt. Lett. 36 1524

    [17]

    Wang B, Koschny T, Soukoulis C M 2009 Phys. Rev. B 80 033108

    [18]

    Brown J R, Hibbins A P, Lockyear M J, Lawrence C R, Sambles J R 2008 J. Appl. Phys. 104 043105

    [19]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [20]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [21]

    Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101 (in Chinese) [沈晓鹏, 崔铁军, 叶建祥 2012 61 058101]

    [22]

    Chen Z, Zhang Y X 2013 Chin. Phys. B 22 067802

    [23]

    Huang L, Chen H 2011 Progress In Electromagnetics Research 113 103

    [24]

    Peng X Y, Wang B, Lai S M, Zhang D H, Teng J H 2012 Opt. Express 20 27756

    [25]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [26]

    Ye Y Q, Jin Y, He S L 2010 Journal of the Optical Society of America B 27 498

    [27]

    Grant J, Ma Y, Saha S, Khalid A, Cumming D R S 2011 Opt. Lett. 36 3476

    [28]

    Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano Lett. 12 1443

    [29]

    Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401

  • [1]

    Caloz C, Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach (New Jersey: John Wiley & Sons, Inc.) pp2,3

    [2]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [3]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [4]

    Tao H, Padilla W J, Zhang X, Averitt R D 2011 IEEE J. Sel. Top. Quantum Electron. 17 92

    [5]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [6]

    Avitzour Y, Urzhumov Y A, Shvetset G 2009 Phys. Rev. 79 045131

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103

    [9]

    Diem M, Koschny T, Soukoulis C M 2009 Phys. Rev. B 79 33101

    [10]

    Liu X L, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403

    [11]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342

    [12]

    Noor A, Hu Z 2010 Iet. Microw. Antenna P 4 667

    [13]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [14]

    Lu L, Qu S B, Ma H, Yu F, Xia S, Xu Z, Bai P 2013 Acta Phys. Sin. 62 104102 (in Chinese) [鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏 2013 62 104102]

    [15]

    Lu L, Qu S B, Xia S, Xu Z, Ma H, Wang J F, Yu F 2013 Acta Phys. Sin. 62 013701 (in Chinese) [鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐 2013 62 013701]

    [16]

    Grant J, Ma Y, Saha S, Lok L B, Khalid A, Cumming D R S 2011 Opt. Lett. 36 1524

    [17]

    Wang B, Koschny T, Soukoulis C M 2009 Phys. Rev. B 80 033108

    [18]

    Brown J R, Hibbins A P, Lockyear M J, Lawrence C R, Sambles J R 2008 J. Appl. Phys. 104 043105

    [19]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [20]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [21]

    Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101 (in Chinese) [沈晓鹏, 崔铁军, 叶建祥 2012 61 058101]

    [22]

    Chen Z, Zhang Y X 2013 Chin. Phys. B 22 067802

    [23]

    Huang L, Chen H 2011 Progress In Electromagnetics Research 113 103

    [24]

    Peng X Y, Wang B, Lai S M, Zhang D H, Teng J H 2012 Opt. Express 20 27756

    [25]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [26]

    Ye Y Q, Jin Y, He S L 2010 Journal of the Optical Society of America B 27 498

    [27]

    Grant J, Ma Y, Saha S, Khalid A, Cumming D R S 2011 Opt. Lett. 36 3476

    [28]

    Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano Lett. 12 1443

    [29]

    Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401

  • [1] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍. 抗方阻波动的超宽带轻薄频率选择表面吸波体.  , 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [2] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试.  , 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [3] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态.  , 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [4] 侯磊, 王俊喃, 王磊, 施卫. α-乳糖水溶液太赫兹吸收光谱实验研究及模拟分析.  , 2021, 70(24): 243202. doi: 10.7498/aps.70.20211716
    [5] 陈旭生, 李九生. 缺陷组合嵌入VO2薄膜结构的可调太赫兹吸收器.  , 2020, 69(2): 027801. doi: 10.7498/aps.69.20191511
    [6] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青. 太赫兹液晶材料与器件研究进展.  , 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [7] 赵赞善, 李培丽. 基于半导体光纤环形腔激光器的全光广播式超宽带信号源.  , 2019, 68(14): 140401. doi: 10.7498/aps.68.20182301
    [8] 曾立, 刘国标, 章海锋, 黄通. 一款基于多物理场调控的超宽带线-圆极化转换器.  , 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [9] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器.  , 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [10] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨. 铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射.  , 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [11] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面.  , 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [12] 田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武. 硅基全光宽带太赫兹幅度调制器的研究.  , 2015, 64(2): 028401. doi: 10.7498/aps.64.028401
    [13] 肖夏, 宋航, 王梁, 王宗杰, 路红. 早期乳腺肿瘤的超宽带微波稳健波束形成成像检测系统.  , 2014, 63(19): 194102. doi: 10.7498/aps.63.194102
    [14] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取.  , 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [15] 韩博琳, 娄淑琴, 鹿文亮, 苏伟, 邹辉, 王鑫. 新型超宽带双芯光子晶体光纤偏振分束器的研究.  , 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [16] 刘明, 张明江, 王安帮, 王龙生, 吉勇宁, 马喆. 直接调制光反馈半导体激光器产生超宽带信号.  , 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [17] 宫蕴瑞, 何迪, 何晨. 混沌超宽带系统的广义负熵盲检测机理研究.  , 2012, 61(12): 120502. doi: 10.7498/aps.61.120502
    [18] 陆金星, 黄志明, 黄敬国, 王兵兵, 沈学民. 相位失配与材料吸收对利用GaSe差频产生太赫兹波功率影响的研究.  , 2011, 60(2): 024209. doi: 10.7498/aps.60.024209
    [19] 杨锐, 谢拥军, 胡海鹏, 王瑞, 满明远, 吴召海. 超宽带异向介质平面倒F天线.  , 2010, 59(5): 3173-3178. doi: 10.7498/aps.59.3173
    [20] 王 鹏, 赵 环, 赵研英, 王兆华, 田金荣, 李德华, 魏志义. 用SPIDER法测量超宽带钛宝石振荡器的激光脉宽研究.  , 2007, 56(1): 224-228. doi: 10.7498/aps.56.224
计量
  • 文章访问数:  7839
  • PDF下载量:  922
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-15
  • 修回日期:  2013-09-06
  • 刊出日期:  2013-12-05

/

返回文章
返回
Baidu
map