-
Pt-Pd合金纳米粒子相对于Pt及Pd单晶纳米粒子均具有更好的催化活性和选择性, 研究它的稳定结构对进一步了解催化性能具有重要意义. 本文采用粒子群算法和量子修正Sutton-Chen多体势对不同尺寸、 不同组成比例的二十四面体Pt-Pd合金纳米粒子的结构稳定性进行研究. 结果表明: Pt-Pd合金纳米粒子中Pt原子趋向于分布在纳米粒子内层, 而Pd原子趋向于分布在纳米粒子外层, 且Pt, Pd原子的分布越对称有序, 其能量越低, 结构越稳定; 随着Pt原子比例的增加, 三种不同尺寸的合金纳米粒子的Warren-Cowley化学短程有序值都逐渐升高, 即纳米粒子更趋向于偏聚分布状态; 在相同比例下, 小尺寸纳米粒子的偏聚程度比大尺 寸纳米粒子的大.Pt-Pd alloy nanoparticles exhibit better catalytic activity and selectivity than pure Pt and Pd ones, and thus to explore their stable structures is crucial for understanding the catalytic performance of nanoparticles. In this paper, the particle swarm optimization algorithm and the quantum Sutton-Chen potentials are employed to investigate the stable structures of tetrahexahedral Pt-Pd alloy nanoparticles with different sizes and different composition. Results show that in Pt-Pd alloy nanoparticles, Pt atoms are preferential to locate of the core and Pd atoms to occupy the surface. Furthermore, the more symmetrical and ordered the structure, the lower the energy of the structure. The Warren-Cowley chemical short-range order parameters of three different sizes of nanoparticles increase accordingly with rising fraction Pt. The segregation degree of small sized nanoparticle is more remarkable than large sized one for the same content of Pt.
-
Keywords:
- alloy nanoparticles /
- particle swarm optimization /
- stable structure
[1] Bell 2003 Science 299 1688
[2] Koenigsmann C, Santulli A C, Gong K, Vukmirovic M B, Zhou W, Sutter E, Wong S S, Adzic R R 2011 J. Am. Chem. Soc. 133 9783
[3] Wang L, Nemoto Y, Yamauchi Y 2011 J. Am. Chem. Soc. 133 9674
[4] Deng Y J, Tian N, Zhou Z Y, Huang R, Liu Z L, Xiao J, Sun S G 2012 Chem. Sci. 3 1157
[5] Wang B, Zhang J M, Lu Y D, Gan X Y, Yin B X, Xu K W 2011 Acta. Phys. Sin. 60 016601 (in Chinese) [王博, 张建民, 路彦冬, 甘秀英, 殷保祥, 徐可为 2011 60 016601]
[6] Radillo-Diaz A, Coronado Y, Perez L A 2009 Eur. Phys. J. D 52 127
[7] Paz-Borbon L O, Gupta A, Johnston R L 2008 J. Mater. Chem. 18 4154
[8] Paz-Borbon L O, Mortimer-Jones T V, Johnston R L 2007 Phys. Chem. Chem. Phys. 9 5202
[9] Rossi G, Ferrando R 2005 J. Chem. Phys. 122 194309
[10] Huang R, Wen Y H, Zhu Z Z, Sun S G 2012 J. Phys. Chem. C 116 8664
[11] Yun K Y, Cho Y H, Cha P R 2012 Acta Mater. 60 4908
[12] Cheng D J, Wang W C, Huang S P 2006 J. Phys. Chem. B 110 16193
[13] Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L 2007 Science 316 732
[14] Zhang S L, Chen H S, Song Y, Yin Y H 2007 Acta. Phys. Sin. 56 2553 (in Chinese) [张素玲, 陈宏善, 宋燕, 尹跃洪 2007 56 2553]
[15] Qi Y, Cagin T, Kimura Y 1999 Phys. Rev. B 59 3527
[16] Qi Y, Cagin T, Johnson W L, Goddard W A 2001 J. Chem. Phys. 115 385
[17] Wen Y H, Zhang Y, Zhu Z Z, Sun S G 2009 Acta. Phys. Sin. 58 2585 (in Chinese) [文玉华, 张杨, 朱梓忠, 孙世刚 2009 58 2585]
[18] Eberhart R, Kennedy J 1995 Procedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, October 4-6, 1995, p39
[19] Clerc M 2004 New Optimization Techniques in Engineering (Berlin: Springer Press) p219
[20] E X L, Duan H M 2010 Acta. Phys. Sin. 59 5672 (in Chinese) [鄂箫亮, 段海明 2010 59 5672]
[21] Gimenez M, Schmicker W 2011 J. Chem. Phys. 134 064707.
[22] Morrow B H, Striolo A 2010 Phys. Rev. B 81 155437
[23] Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983
[24] Cowley J M 1950 Phys. Rev. 77 669
[25] Du P Y, Pan Y 2002 Fundamentals of Materials Science (Beijing: Building Materials Industry Press of China) p136 (in Chinese) [杜丕一, 潘颐 2002 材料科学基础 (北京: 中国建材工业出版社) 第136页]
-
[1] Bell 2003 Science 299 1688
[2] Koenigsmann C, Santulli A C, Gong K, Vukmirovic M B, Zhou W, Sutter E, Wong S S, Adzic R R 2011 J. Am. Chem. Soc. 133 9783
[3] Wang L, Nemoto Y, Yamauchi Y 2011 J. Am. Chem. Soc. 133 9674
[4] Deng Y J, Tian N, Zhou Z Y, Huang R, Liu Z L, Xiao J, Sun S G 2012 Chem. Sci. 3 1157
[5] Wang B, Zhang J M, Lu Y D, Gan X Y, Yin B X, Xu K W 2011 Acta. Phys. Sin. 60 016601 (in Chinese) [王博, 张建民, 路彦冬, 甘秀英, 殷保祥, 徐可为 2011 60 016601]
[6] Radillo-Diaz A, Coronado Y, Perez L A 2009 Eur. Phys. J. D 52 127
[7] Paz-Borbon L O, Gupta A, Johnston R L 2008 J. Mater. Chem. 18 4154
[8] Paz-Borbon L O, Mortimer-Jones T V, Johnston R L 2007 Phys. Chem. Chem. Phys. 9 5202
[9] Rossi G, Ferrando R 2005 J. Chem. Phys. 122 194309
[10] Huang R, Wen Y H, Zhu Z Z, Sun S G 2012 J. Phys. Chem. C 116 8664
[11] Yun K Y, Cho Y H, Cha P R 2012 Acta Mater. 60 4908
[12] Cheng D J, Wang W C, Huang S P 2006 J. Phys. Chem. B 110 16193
[13] Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L 2007 Science 316 732
[14] Zhang S L, Chen H S, Song Y, Yin Y H 2007 Acta. Phys. Sin. 56 2553 (in Chinese) [张素玲, 陈宏善, 宋燕, 尹跃洪 2007 56 2553]
[15] Qi Y, Cagin T, Kimura Y 1999 Phys. Rev. B 59 3527
[16] Qi Y, Cagin T, Johnson W L, Goddard W A 2001 J. Chem. Phys. 115 385
[17] Wen Y H, Zhang Y, Zhu Z Z, Sun S G 2009 Acta. Phys. Sin. 58 2585 (in Chinese) [文玉华, 张杨, 朱梓忠, 孙世刚 2009 58 2585]
[18] Eberhart R, Kennedy J 1995 Procedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, October 4-6, 1995, p39
[19] Clerc M 2004 New Optimization Techniques in Engineering (Berlin: Springer Press) p219
[20] E X L, Duan H M 2010 Acta. Phys. Sin. 59 5672 (in Chinese) [鄂箫亮, 段海明 2010 59 5672]
[21] Gimenez M, Schmicker W 2011 J. Chem. Phys. 134 064707.
[22] Morrow B H, Striolo A 2010 Phys. Rev. B 81 155437
[23] Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983
[24] Cowley J M 1950 Phys. Rev. 77 669
[25] Du P Y, Pan Y 2002 Fundamentals of Materials Science (Beijing: Building Materials Industry Press of China) p136 (in Chinese) [杜丕一, 潘颐 2002 材料科学基础 (北京: 中国建材工业出版社) 第136页]
计量
- 文章访问数: 6849
- PDF下载量: 635
- 被引次数: 0