搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合型多晶金刚石末级压砧的制备并标定六面顶压机6-8型压腔压力至35GPa

王海阔 贺端威 许超 刘方明 邓佶睿 何飞 王永坤 寇自力

引用本文:
Citation:

复合型多晶金刚石末级压砧的制备并标定六面顶压机6-8型压腔压力至35GPa

王海阔, 贺端威, 许超, 刘方明, 邓佶睿, 何飞, 王永坤, 寇自力

Calibration of pressure to 35 GPa for the cubic press using the diamond-cemented carbide compound anvil

Wang Hai-Kuo, He Duan-Wei, Xu Chao, Liu Fang-Ming, Deng Ji-Rui, He Fei, Wang Yong-Kun, Kou Zi-Li
PDF
导出引用
  • 通过分析二级6-8型大腔体静高压装置八面体压腔的受力状况, 研制了一种使用成本低、尺寸大且易于加工的多晶金刚石-硬质合金复合二级(末级)顶锤(压砧). 采用原位电阻测量观测Zr在高压下相变(α-ω, 7.96 GPa; ω-β, 34.5 GPa)的方法, 标定了由多晶金刚石-硬质合金复合末级压砧构建的5.5/1.5(传压介质边长/二级顶锤锤面边长, 单位: mm)组装的腔体压力. 实验表明, 自行研制的多晶金刚石-硬质合金复合末级压砧可使基于国产六面顶压机构架的二级加压系统的压力产生上限从约20 GPa提高到35 GPa以上, 拓展了国内大腔体静高压技术的压力产生范围. 应用这一技术, 我们期望经过末级压砧材料与压腔设计的进一步优化, 在基于国产六面顶压机的二级6-8 型大腔体静高压装置压腔中产生超过50 GPa的高压.
    In the present study, we analyse the mechanical structure for the two-stage anvil cell, and design the two-stage high pressure cell using diamond-cemented carbide compound as anvil-material. The diamond-cemented carbide compound material is synthesized using the 6×2500 ton cubic press in our laboratory. We sinter diamond/Co layer (Φ30 mm×10 mm) on a WC-cobalt substrate (Φ30 mm×13 mm) at high pressures and temperatures, then, we obtain the cubic anvils from the sintered cylindrical chunks by wire-electrode cutting. The diamond-cemented carbide compound anvil has three advantages over the traditional sintered diamond anvil: first, a scaled-up version of the sintered diamond anvil could be obtained by sintering the diamond/Co layer on a WC-cobalt substrate; second, the diamond-cemented carbide compound anvil is machined easily compared with the sintered diamond anvil; and third, the experimental cost using the diamond-cemented carbide compound anvils is much lower than using the sintered diamond anvil. Using the diamond-cemented carbide compound anvil, we design the two-stage 5.5/1.5 (octahedral edge-length/anvil truncation edge-length, in millimetre) assemble. Pressure calibration at room temperature is performed for the 5.5/1.5 assemble using the phase transitions of Zr (α-ω, 7.96 GPa; ω-β, 34.5 GPa) under high pressures. The pressure range of the two-stage apparatus besed on hinge-type cubic press is extended from 20 GPa to about 35 GPa using the 5.5/1.5 assemble. The pressure calibration for the two-stage apparatus using diamond-cemented carbide compound anvil is ongoing in our laboratory. We believe that the pressures above 50 GPa could be achieved using these anvils.
    • 基金项目: 国家自然科学基金科学仪器基础研究专项(批准号:11027405)和国家重点基础研究发展计划(批准号:2011CB808200)资助的课题.
    • Funds: Project supported by the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China (Grant No. 11027405), and the National Basic Research Program of China (Grant No. 2011CB808200).
    [1]

    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 42 599

    [2]

    Qin J Q, He D W, Wang J H, Fang L M, Lei L, Li Y J, Hu J, Kou Z L, Bi Y 2008 Adv. Mater. 20 4780

    [3]

    Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y 2013 Nature 493 385

    [4]

    Xu C, He D W,Wang H K, Guan J W, Liu C M, Peng F, Wang W D, Kou Z L, He K, Yan X Z, Bi Y, Liu L, Li F J, Hui B 2012 Int. J. Refract. Metals and Hard Mater. 36 232

    [5]

    Oganov A R, Ono S 2004 Nature 430 445

    [6]

    Ma Y M, Eremets M Oganov A R Xie Y, Trojan I, Medvedev S Lyakhov A O, Valle M, Prakapenka V 2009 Nature 458 182

    [7]

    Hemley R J, Soos Z G, Hanfland M, Mao H K 1994 Nature 369 384

    [8]

    Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, Abakumov A M 2012 Nat. Commun. 3 1163

    [9]

    Jayaraman A 1986 Rev. Sci. Instrum. 57 1013

    [10]

    Andrault D, Fiquet G 2001 Rev. Sci. Instrum. 72 1283

    [11]

    Peiris S M, Butcher R, Pearson W 2005 Joint 20th AIRAPT-43th EHPRG Karlsruhe, Germany, June 27-July 1, 2005

    [12]

    Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G, Wilson R M 1995 Appl. Phys. Lett. 66 1735

    [13]

    Fan D W, Wei S Y, Xie H S 2013 Chin. Phys. B 22 010702

    [14]

    Sung C M 1997 High Temp. High Pressure 29 253

    [15]

    He D W, Wang H K, Tan N, Wang W D, Kou Z L, Peng F 2007 Chinese Patent (No. ZL 201010142804.7) [贺端威, 王海阔, 谭宁, 王文丹, 寇自力, 彭放 2007 中国专利(专利号: ZL 201010142804.7)]

    [16]

    Wang H K, He D W 2011 Chinese Patent (No. ZL 201110091480.3) [王海阔, 贺端威 2011 中国专利(专利号: ZL 201110091480.3)]

    [17]

    Li Z C, Jia X P, Huang Guo F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701

    [18]

    Yu G, Han Q G, Li M Z, Jia X P, Ma H A, Li Y F 2012 Acta Phys. Sin. 61 040702 (in Chinese) [于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬 2012 61 040702]

    [19]

    Khvostantsev L G 1984 High Temp. -High Pressure 16 165

    [20]

    Zhao Y S, He D W, Jiang Q, Pantea C, Lokshin K A, Zhang J Z, Daemen L L 2005 TAP-98, in the HiPPO Diffractor, in Advances in High-Pressure Technology for Geophysical Applications (Berlin: Elsevier) p461

    [21]

    Wang H K, He D W, Tan N, Wang W D, Wang J H, Dong H N, Ma H, Kou Z L, Peng F, Liu X, Li S C 2010 Rev. Sci. Instrum. 81 116101

    [22]

    Wang H K, He D WYan X Z, Xu C, Guan J W, Tan N, Wang W D 2011 High Press. Res. 31 581

    [23]

    Wang H K, He D W 2012 High Press. Res. 32 186

    [24]

    Liebermann Robert C, Wang Y B 1992 High-Pressure Research: Application to Earth and Planetary Sciences (Washington DC: AGU) p19

    [25]

    Tange Y, Irifune T, Funakoshi K 2008 High Press. Res. 28 245

    [26]

    Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 02190

    [27]

    Utsumi W, Funakoshi K I, Katayama Y, Yamakata M, Okada T, Shimomura O 2002 J. Phys.: Condens. Matter 14 10497

    [28]

    Wang Y B, Durham W B, Getting I C, Weidner D J 2003 Rev. Sci. Instrum. 74 3002

    [29]

    Tomoo K, Kenichi F, Atsushi K, Norimasa N, Yoshinori T, Sueda Y, Tomoaki K, Wataru U 2004 Phys. Earth Planet. Int. 143-144 497

    [30]

    Reza A, Henry Z, Carter C 2005 Dia. Relat. Mater. 14 1916

    [31]

    Frost D J, Poe B T, Tronnes R G, Liebske C, Duba A, Rubie D C 2004 Phys. Earth. Planet. Int. 143-144 507

    [32]

    Kawai N, Endo S 1970 Rev. Sci. Instrum. 41 1178

    [33]

    Cordier P, Rubie D C 2001 Mater. Sci. Engin. A 309-310 38

    [34]

    L S J, Luo J T, Su L, Hu Y, Yuan C S, Hong S M 2009 Acta Phys. Sin. 58 6852 (in Chinese) [吕世杰, 罗建太, 苏磊, 胡云, 袁朝圣, 洪时明 2009 58 6852]

    [35]

    Kunimoto T, Irifune T, Sumiya H 2008 High Pres. Res. 28 237

    [36]

    Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 012190

    [37]

    He D W, Wang F L, Kou Z L, Peng F 2007 Chinese Patent (No. ZL 2007 1 0048839.2) [贺端威, 王福龙, 寇自力, 彭放 2007 中国专利 (专利号: ZL 2007 1 0048839.2)]

    [38]

    Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L, Peng F 2008 Acta Phys. Sin. 57 5429 (in Chinese) [王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张伟, 张剑, 寇自力, 彭放 2008 57 5429]

    [39]

    Wang W D, He D W, Wang H K, Wang F L, Dong H N, Chen H H, Li Z Y, Zhang J, Wang S M, Kou Z L, Peng F 2010 Acta Phys. Sin. 59 3107 (in Chinese) [王文丹, 贺端威, 王海阔, 王福龙, 董海妮, 陈海花, 李子扬, 张剑, 王善民, 寇自力, 彭放 2010 59 3107]

    [40]

    Guan J W, He D W, Wang H K, Peng F, Wang W D, Wang K X, He K 2012 Acta Phys. Sin. 61 100701 (in Chinese) [管俊伟, 贺端威, 王海阔, 彭放, 王文丹, 王凯雪, 贺凯 2012 61 100701]

    [41]

    Tange Y, Takahashi E, Funakoshi K 2011 High Press. Res. 31 413

    [42]

    Wang H K, He D W, Xu C, Tang M J, Li Y, Dong H N, Meng C M, Wang Z G, Zhu W J 2013 J. Appl. Phys. 113 043505

    [43]

    He D W, Wang H K, Xu C 2012 Chinese Patent (No. 201210149626) [贺端威, 王海阔, 许超 2012 中国专利 (专利号申请号: 201210149626)]

    [44]

    Lorenzana H E, Boppart H, Silvera I F 1988 Rev. Sci. Instrum. 59 2583

  • [1]

    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 42 599

    [2]

    Qin J Q, He D W, Wang J H, Fang L M, Lei L, Li Y J, Hu J, Kou Z L, Bi Y 2008 Adv. Mater. 20 4780

    [3]

    Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y 2013 Nature 493 385

    [4]

    Xu C, He D W,Wang H K, Guan J W, Liu C M, Peng F, Wang W D, Kou Z L, He K, Yan X Z, Bi Y, Liu L, Li F J, Hui B 2012 Int. J. Refract. Metals and Hard Mater. 36 232

    [5]

    Oganov A R, Ono S 2004 Nature 430 445

    [6]

    Ma Y M, Eremets M Oganov A R Xie Y, Trojan I, Medvedev S Lyakhov A O, Valle M, Prakapenka V 2009 Nature 458 182

    [7]

    Hemley R J, Soos Z G, Hanfland M, Mao H K 1994 Nature 369 384

    [8]

    Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, Abakumov A M 2012 Nat. Commun. 3 1163

    [9]

    Jayaraman A 1986 Rev. Sci. Instrum. 57 1013

    [10]

    Andrault D, Fiquet G 2001 Rev. Sci. Instrum. 72 1283

    [11]

    Peiris S M, Butcher R, Pearson W 2005 Joint 20th AIRAPT-43th EHPRG Karlsruhe, Germany, June 27-July 1, 2005

    [12]

    Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G, Wilson R M 1995 Appl. Phys. Lett. 66 1735

    [13]

    Fan D W, Wei S Y, Xie H S 2013 Chin. Phys. B 22 010702

    [14]

    Sung C M 1997 High Temp. High Pressure 29 253

    [15]

    He D W, Wang H K, Tan N, Wang W D, Kou Z L, Peng F 2007 Chinese Patent (No. ZL 201010142804.7) [贺端威, 王海阔, 谭宁, 王文丹, 寇自力, 彭放 2007 中国专利(专利号: ZL 201010142804.7)]

    [16]

    Wang H K, He D W 2011 Chinese Patent (No. ZL 201110091480.3) [王海阔, 贺端威 2011 中国专利(专利号: ZL 201110091480.3)]

    [17]

    Li Z C, Jia X P, Huang Guo F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701

    [18]

    Yu G, Han Q G, Li M Z, Jia X P, Ma H A, Li Y F 2012 Acta Phys. Sin. 61 040702 (in Chinese) [于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬 2012 61 040702]

    [19]

    Khvostantsev L G 1984 High Temp. -High Pressure 16 165

    [20]

    Zhao Y S, He D W, Jiang Q, Pantea C, Lokshin K A, Zhang J Z, Daemen L L 2005 TAP-98, in the HiPPO Diffractor, in Advances in High-Pressure Technology for Geophysical Applications (Berlin: Elsevier) p461

    [21]

    Wang H K, He D W, Tan N, Wang W D, Wang J H, Dong H N, Ma H, Kou Z L, Peng F, Liu X, Li S C 2010 Rev. Sci. Instrum. 81 116101

    [22]

    Wang H K, He D WYan X Z, Xu C, Guan J W, Tan N, Wang W D 2011 High Press. Res. 31 581

    [23]

    Wang H K, He D W 2012 High Press. Res. 32 186

    [24]

    Liebermann Robert C, Wang Y B 1992 High-Pressure Research: Application to Earth and Planetary Sciences (Washington DC: AGU) p19

    [25]

    Tange Y, Irifune T, Funakoshi K 2008 High Press. Res. 28 245

    [26]

    Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 02190

    [27]

    Utsumi W, Funakoshi K I, Katayama Y, Yamakata M, Okada T, Shimomura O 2002 J. Phys.: Condens. Matter 14 10497

    [28]

    Wang Y B, Durham W B, Getting I C, Weidner D J 2003 Rev. Sci. Instrum. 74 3002

    [29]

    Tomoo K, Kenichi F, Atsushi K, Norimasa N, Yoshinori T, Sueda Y, Tomoaki K, Wataru U 2004 Phys. Earth Planet. Int. 143-144 497

    [30]

    Reza A, Henry Z, Carter C 2005 Dia. Relat. Mater. 14 1916

    [31]

    Frost D J, Poe B T, Tronnes R G, Liebske C, Duba A, Rubie D C 2004 Phys. Earth. Planet. Int. 143-144 507

    [32]

    Kawai N, Endo S 1970 Rev. Sci. Instrum. 41 1178

    [33]

    Cordier P, Rubie D C 2001 Mater. Sci. Engin. A 309-310 38

    [34]

    L S J, Luo J T, Su L, Hu Y, Yuan C S, Hong S M 2009 Acta Phys. Sin. 58 6852 (in Chinese) [吕世杰, 罗建太, 苏磊, 胡云, 袁朝圣, 洪时明 2009 58 6852]

    [35]

    Kunimoto T, Irifune T, Sumiya H 2008 High Pres. Res. 28 237

    [36]

    Kunimoto T, Irifune T 2010 J. Phys.: Conf. Ser. 215 012190

    [37]

    He D W, Wang F L, Kou Z L, Peng F 2007 Chinese Patent (No. ZL 2007 1 0048839.2) [贺端威, 王福龙, 寇自力, 彭放 2007 中国专利 (专利号: ZL 2007 1 0048839.2)]

    [38]

    Wang F L, He D W, Fang L M, Chen X F, Li Y J, Zhang W, Zhang J, Kou Z L, Peng F 2008 Acta Phys. Sin. 57 5429 (in Chinese) [王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张伟, 张剑, 寇自力, 彭放 2008 57 5429]

    [39]

    Wang W D, He D W, Wang H K, Wang F L, Dong H N, Chen H H, Li Z Y, Zhang J, Wang S M, Kou Z L, Peng F 2010 Acta Phys. Sin. 59 3107 (in Chinese) [王文丹, 贺端威, 王海阔, 王福龙, 董海妮, 陈海花, 李子扬, 张剑, 王善民, 寇自力, 彭放 2010 59 3107]

    [40]

    Guan J W, He D W, Wang H K, Peng F, Wang W D, Wang K X, He K 2012 Acta Phys. Sin. 61 100701 (in Chinese) [管俊伟, 贺端威, 王海阔, 彭放, 王文丹, 王凯雪, 贺凯 2012 61 100701]

    [41]

    Tange Y, Takahashi E, Funakoshi K 2011 High Press. Res. 31 413

    [42]

    Wang H K, He D W, Xu C, Tang M J, Li Y, Dong H N, Meng C M, Wang Z G, Zhu W J 2013 J. Appl. Phys. 113 043505

    [43]

    He D W, Wang H K, Xu C 2012 Chinese Patent (No. 201210149626) [贺端威, 王海阔, 许超 2012 中国专利 (专利号申请号: 201210149626)]

    [44]

    Lorenzana H E, Boppart H, Silvera I F 1988 Rev. Sci. Instrum. 59 2583

  • [1] 田毅, 杜明浩, 张佳威, 贺端威. 立方大腔体静高压装置中叶腊石的传压及密封性能研究.  , 2024, 73(1): 019101. doi: 10.7498/aps.73.20231087
    [2] 戴逸, 王文丹, 法志湘, 王路, 王菊, 梁策, 李星翰. 八面腔压机中一定尺寸的二级压砧上运行的最大组装.  , 2021, 70(14): 144702. doi: 10.7498/aps.70.20210006
    [3] 王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇. Ib型金刚石大单晶的限形生长.  , 2018, 67(16): 168101. doi: 10.7498/aps.67.20180356
    [4] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究.  , 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [5] 丁琨, 武雪飞, 窦秀明, 孙宝权. 电驱动金刚石对顶砧低温连续加压装置.  , 2016, 65(3): 037701. doi: 10.7498/aps.65.037701
    [6] 唐菲, 陈丽英, 刘秀茹, 王君龙, 张林基, 洪时明. 一种以压力一维均匀分布为特征的长条形对顶压砧.  , 2016, 65(10): 100701. doi: 10.7498/aps.65.100701
    [7] 简小刚, 陈军. Co元素对硬质合金基底金刚石涂层膜基界面结合强度的影响.  , 2015, 64(21): 216701. doi: 10.7498/aps.64.216701
    [8] 蒋建军, 李和平, 代立东, 胡海英, 赵超帅. 基于拉曼频移的白宝石压腔无压标系统高温高压实验标定.  , 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [9] 于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬. 新型圆角式高压碳化钨硬质合金顶锤的有限元分析.  , 2012, 61(4): 040702. doi: 10.7498/aps.61.040702
    [10] 管俊伟, 贺端威, 王海阔, 彭放, 许超, 王文丹, 王凯雪, 贺凯. 力学结构及末级压砧硬度对八面体压腔高压发生效率的影响.  , 2012, 61(10): 100701. doi: 10.7498/aps.61.100701
    [11] 秦杰明, 张莹, 曹建明, 田立飞. 纯铁触媒合成磨料级金刚石及表征.  , 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [12] 王文丹, 贺端威, 王海阔, 王福龙, 董海妮, 陈海花, 李子扬, 张剑, 王善民, 寇自力, 彭放. 二级6—8型大腔体装置的高压发生效率机理研究.  , 2010, 59(5): 3107-3115. doi: 10.7498/aps.59.3107
    [13] 吕世杰, 罗建太, 苏磊, 胡云, 袁朝圣, 洪时明. 滑块式六含八超高压实验装置及其压力温度标定.  , 2009, 58(10): 6852-6857. doi: 10.7498/aps.58.6852
    [14] 王福龙, 贺端威, 房雷鸣, 陈晓芳, 李拥军, 张 伟, 张 剑, 寇自力, 彭 放. 基于铰链式六面顶压机的二级6-8型大腔体静高压装置.  , 2008, 57(9): 5429-5434. doi: 10.7498/aps.57.5429
    [15] 李荣斌. 硼/氮原子共注入金刚石的原子级研究.  , 2007, 56(1): 395-399. doi: 10.7498/aps.56.395
    [16] 陶瑞宝, 虞恩溪, 卢建华, 陈哲. Ohn空间群Γ点二级结构相变的方向.  , 1983, 32(6): 819-822. doi: 10.7498/aps.32.819
    [17] 程月英, 陈景章, 陈良辰. 超高压下生长多晶金刚石中触媒金属Ni的扩散及分布.  , 1980, 29(11): 1507-1512. doi: 10.7498/aps.29.1507
    [18] 胡静竹, 唐汝明, 徐济安. 金刚石压砧高压装置及I2和S高压相变的观察.  , 1980, 29(10): 1351-1354. doi: 10.7498/aps.29.1351
    [19] 沈主同, 王莉君, 杨奕娟, 聂建军, 刘宇明, 张军. 高压下多晶体金刚石的烧结机制——二元掺杂物和金刚石的相互作用.  , 1978, 27(3): 344-348. doi: 10.7498/aps.27.344
    [20] 李家璘, 陈良辰, 沈主同. 双级四压砧(四面体)静态超高压技术.  , 1975, 24(4): 301-306. doi: 10.7498/aps.24.301
计量
  • 文章访问数:  8645
  • PDF下载量:  1150
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-13
  • 修回日期:  2013-06-17
  • 刊出日期:  2013-09-05

/

返回文章
返回
Baidu
map