搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

球形压头与单晶铝材料纳米接触过程的多尺度分析

杨晓京 方聪聪

引用本文:
Citation:

球形压头与单晶铝材料纳米接触过程的多尺度分析

杨晓京, 方聪聪

Multi-scale analysis of nanoscale contact process between spherical indenter and single crystal aluminium

Yang Xiao-Jing, Fang Cong-Cong
PDF
导出引用
  • 采用准连续介质多尺度理论及排斥力场函数, 建立了刚性球形压头与单晶铝材料表面纳米接触与脱离过程的跨尺度分析模型, 得到载荷-位移响应曲线、原子变化状态图及位移云纹图. 研究了接触与脱离过程中单晶铝材料微观变形时原子的排列情况以及压 头形状对位错的形核和发射产生的影响. 从微观角度分析了接触变形机理. 结果表明, 随着接触深度的增加, 球形压头下部两侧的原子受力方向不断变化, 使得载荷-位移响应曲线出现不同于方形压头的阶梯状. 由于压头形状的影响, 压头两侧的密排原子面实现部分滑移形成了肖克利不完全位错. 脱离过程中, 原子紧贴压头向上移动, 实现部分弹性恢复, 残余位移为0.3 nm, 非常接近单晶铝单位位错的伯格斯矢量的 模0.285 nm.
    Based on the quasicontinuum method and repulsive force-field approach, a muti-scale modeling of nano-contact process between rigid spherical indenter and surface of single crystal aluminium is established. The corresponding load-depth, graph of atomic state, and moire pattern of displacement are obtained, from which the arrangement of atoms and the effects of the shape of indenter on the nucleation and emission of dislocations in the contact process are studied. Therefore micro-mechanisms of deformation are analyzed. The result shows that due to the fact that the direction of force on atoms that contact the indenter is constantly changing with the increase of contact depth, the corresponding load-depth shows that step increases which is different from that of the square indenter with the response of the underlying crystal. Due to the indenter geometry, the close packed planes under both sides of indenter slip partially lead to Shockley partial dislocations. In the process of disengagement, the elastic recovery is accomplished as the atoms move up with indenter. The residual depth is 0.3 nm, which is close to the magnitude of the Burgers vector, 0.285 nm.
    • 基金项目: 国家自然科学基金(批准号:11062003)资助的课题.
    • Funds: Project supported by the National Science Fund for the National Natural Science Foundation of China (Grant No. 11062003).
    [1]

    Zhou Z R, Lei Y Z, Zhang C W 2006 Frontier Development of Tribology (Beijing: Science Press) p4 (in Chinese) [周仲荣, 雷源忠, 张嗣伟 2006 摩擦学发展前沿 (北京: 科学出版社) 第4页]

    [2]

    Leng Y S, Hu Y Z, Zheng L Q 1999 J. Tribol.-T. ASME 121 128

    [3]

    Xiao X D, Qian L M 2000 Langmuir 16 8153

    [4]

    Liu W K, Karpov E G, Zhan G S, Park H S 2004 Comput. Method Appl. M. 193 1529

    [5]

    Karpov E G, Yu H, Park H S, Kam L W, Jane W Q, Qian D 2006 Int. J. Solids Struct. 43 6359

    [6]

    Shillkrot L E, Miller R E, Curtin W A 2002 J. Mech. Phys. Solids 50 2085

    [7]

    Luan B Q, Hyun S, Molinari J F, Bernstein N, Robbins M O 2006 Phys. Rev. E 74 046710

    [8]

    Liu W K, Park H S 2006 Handbook of Theorectical and Computational Nanotechnology (Stevenson Ranch: American Scientific Publishers)

    [9]

    Liu W K, Park H S, Qian D, Eduard G, Kadowaki H, Wagner G J 2006 Comput. Method Appl. M. 195 1407

    [10]

    Miller R E, Tadmor E B 2002 J. Computer-Aided Mater. Des. 9 203

    [11]

    Tadmor E B, Miller R E 2005 Handbook of Materials Modeling (Dordrecht: Kluwer Academic Publishers)

    [12]

    Sauer R A, Li S 2007 Finite Elem. Anal. Des. 43 384

    [13]

    Sauer R A, Li S 2007 Int. J. Numer. Meth. Eng. 71 931

    [14]

    Li J W, Ni Y S, Lin Y H 2009 Acta Metall. Sin. 45 129 (in Chinese) [黎军顽, 倪玉山, 林逸汉 2009 金属学报 45 129]

    [15]

    Qin Z D, Wang H T, Ni Y S 2007 Chin. Quart. Mech. 28 46 (in Chinese) [秦昭栋, 王华滔, 倪玉山 2007 力学季刊 28 46]

    [16]

    Wang H T, Qin Z D, Ni Y S, Zhang W 2009 Acta Phys. Sin. 58 1057 (in Chinese) [王华滔, 秦昭栋, 倪玉山, 张文 2009 58 1057]

    [17]

    Miller R E, Rodney D 2008 J. Mech. Phys. Solids 56 1203

    [18]

    Mei J F, Li J W, Ni Y S, Wang H T 2010 Nanoscale Res. Lett. 5 692

    [19]

    Tadmor E B, Ortiz M, Philips R 1996 Philos. Mag. A 73 1529

    [20]

    Tadmor E B, 1996 Ph. D. Dissertation (Providence: Brown University)

    [21]

    Tadmor E B, Miller R E, Philips R, Ortiz M 1999 Mater. Res. 14 2233

    [22]

    Tadmor E B, Miller R E 2011 Modeling Materials Continuum, Atomistic and Multiscale Techniques (London: Cambridge University Press) p610

    [23]

    Shenoy V B, Miller R E, Tadmor E B, Rodney D, Phillips R, Ortiz M 1999 Mech. Phys. Solids 47 611

    [24]

    Erolessi F, Adams J B 1994 Europhys. Lett. 28 583

    [25]

    Li J W 2010 Ph. D. Dissertation (Shanghai: Fuda University) [黎军顽 2010 博士学位论文 (上海: 复旦大学)]

    [26]

    Kelchner Cynthia L, Plimpton S J, Hamilton J C 1998 Phys. Rev. B 58 11085

    [27]

    Michalske T A, Houston J E 1998 Acta Mater. 46 391

    [28]

    Huo D H, Liang Y C, Chen K 2003 China Mech. Engineer. 14 43 (in Chinese) [霍德鸿, 梁迎春, 程 凯 2003 中国机械工程 14 43]

    [29]

    Yang X J, Zhan S P 2012 Trans. Chin. Soc. Agricult. Machinery 43 250 (in Chinese) [杨晓京, 詹胜鹏 2012 农业机械学报 43 250]

    [30]

    Ian C, Jane S 2012 Introduction to Programming with Fortran (London: Springer Press) p21

    [31]

    Jiang W G, Li J W, Su J J, Tang J L 2007 Acta Mech. Solida Sin. 28 375 (in Chinese) [江五贵, 黎军顽, 苏建君, 汤井伦 2007 固体力学学报 28 375]

    [32]

    Landman U, Luedtke W D, Burnham N A, Colton R J 1990 Science 248 454

    [33]

    Gouldstone A, Koh H J, Zeng K Y, Giannakopoulos A E, Suresh S 2000 Acta Mater. 48 2277

    [34]

    Shi L Q, Sun T, Yan Y D, Dong S 2006 Nanotechnol. Precision Engineer. 4 146

    [35]

    Hu G X, Cai X 2000 Fundamentals of Materials Science (Shanghai: Shanghai Jiaotong University Press) p102 (in Chinese) [胡赓祥, 蔡珣 2000 材料科学基础 (上海: 上海交通大学出版社) 第102页]

    [36]

    Vugrin Kay E 2003 M. S. Dissertation (Blacksburg: Virginia Polytechnic Institute and State University)

    [37]

    Rubio G, Agraï N, Vieira S 1995 Phys. Rev. Lett. 76 2302

  • [1]

    Zhou Z R, Lei Y Z, Zhang C W 2006 Frontier Development of Tribology (Beijing: Science Press) p4 (in Chinese) [周仲荣, 雷源忠, 张嗣伟 2006 摩擦学发展前沿 (北京: 科学出版社) 第4页]

    [2]

    Leng Y S, Hu Y Z, Zheng L Q 1999 J. Tribol.-T. ASME 121 128

    [3]

    Xiao X D, Qian L M 2000 Langmuir 16 8153

    [4]

    Liu W K, Karpov E G, Zhan G S, Park H S 2004 Comput. Method Appl. M. 193 1529

    [5]

    Karpov E G, Yu H, Park H S, Kam L W, Jane W Q, Qian D 2006 Int. J. Solids Struct. 43 6359

    [6]

    Shillkrot L E, Miller R E, Curtin W A 2002 J. Mech. Phys. Solids 50 2085

    [7]

    Luan B Q, Hyun S, Molinari J F, Bernstein N, Robbins M O 2006 Phys. Rev. E 74 046710

    [8]

    Liu W K, Park H S 2006 Handbook of Theorectical and Computational Nanotechnology (Stevenson Ranch: American Scientific Publishers)

    [9]

    Liu W K, Park H S, Qian D, Eduard G, Kadowaki H, Wagner G J 2006 Comput. Method Appl. M. 195 1407

    [10]

    Miller R E, Tadmor E B 2002 J. Computer-Aided Mater. Des. 9 203

    [11]

    Tadmor E B, Miller R E 2005 Handbook of Materials Modeling (Dordrecht: Kluwer Academic Publishers)

    [12]

    Sauer R A, Li S 2007 Finite Elem. Anal. Des. 43 384

    [13]

    Sauer R A, Li S 2007 Int. J. Numer. Meth. Eng. 71 931

    [14]

    Li J W, Ni Y S, Lin Y H 2009 Acta Metall. Sin. 45 129 (in Chinese) [黎军顽, 倪玉山, 林逸汉 2009 金属学报 45 129]

    [15]

    Qin Z D, Wang H T, Ni Y S 2007 Chin. Quart. Mech. 28 46 (in Chinese) [秦昭栋, 王华滔, 倪玉山 2007 力学季刊 28 46]

    [16]

    Wang H T, Qin Z D, Ni Y S, Zhang W 2009 Acta Phys. Sin. 58 1057 (in Chinese) [王华滔, 秦昭栋, 倪玉山, 张文 2009 58 1057]

    [17]

    Miller R E, Rodney D 2008 J. Mech. Phys. Solids 56 1203

    [18]

    Mei J F, Li J W, Ni Y S, Wang H T 2010 Nanoscale Res. Lett. 5 692

    [19]

    Tadmor E B, Ortiz M, Philips R 1996 Philos. Mag. A 73 1529

    [20]

    Tadmor E B, 1996 Ph. D. Dissertation (Providence: Brown University)

    [21]

    Tadmor E B, Miller R E, Philips R, Ortiz M 1999 Mater. Res. 14 2233

    [22]

    Tadmor E B, Miller R E 2011 Modeling Materials Continuum, Atomistic and Multiscale Techniques (London: Cambridge University Press) p610

    [23]

    Shenoy V B, Miller R E, Tadmor E B, Rodney D, Phillips R, Ortiz M 1999 Mech. Phys. Solids 47 611

    [24]

    Erolessi F, Adams J B 1994 Europhys. Lett. 28 583

    [25]

    Li J W 2010 Ph. D. Dissertation (Shanghai: Fuda University) [黎军顽 2010 博士学位论文 (上海: 复旦大学)]

    [26]

    Kelchner Cynthia L, Plimpton S J, Hamilton J C 1998 Phys. Rev. B 58 11085

    [27]

    Michalske T A, Houston J E 1998 Acta Mater. 46 391

    [28]

    Huo D H, Liang Y C, Chen K 2003 China Mech. Engineer. 14 43 (in Chinese) [霍德鸿, 梁迎春, 程 凯 2003 中国机械工程 14 43]

    [29]

    Yang X J, Zhan S P 2012 Trans. Chin. Soc. Agricult. Machinery 43 250 (in Chinese) [杨晓京, 詹胜鹏 2012 农业机械学报 43 250]

    [30]

    Ian C, Jane S 2012 Introduction to Programming with Fortran (London: Springer Press) p21

    [31]

    Jiang W G, Li J W, Su J J, Tang J L 2007 Acta Mech. Solida Sin. 28 375 (in Chinese) [江五贵, 黎军顽, 苏建君, 汤井伦 2007 固体力学学报 28 375]

    [32]

    Landman U, Luedtke W D, Burnham N A, Colton R J 1990 Science 248 454

    [33]

    Gouldstone A, Koh H J, Zeng K Y, Giannakopoulos A E, Suresh S 2000 Acta Mater. 48 2277

    [34]

    Shi L Q, Sun T, Yan Y D, Dong S 2006 Nanotechnol. Precision Engineer. 4 146

    [35]

    Hu G X, Cai X 2000 Fundamentals of Materials Science (Shanghai: Shanghai Jiaotong University Press) p102 (in Chinese) [胡赓祥, 蔡珣 2000 材料科学基础 (上海: 上海交通大学出版社) 第102页]

    [36]

    Vugrin Kay E 2003 M. S. Dissertation (Blacksburg: Virginia Polytechnic Institute and State University)

    [37]

    Rubio G, Agraï N, Vieira S 1995 Phys. Rev. Lett. 76 2302

  • [1] 高丰, 李欢庆, 宋卓, 赵宇宏. 三模晶体相场法研究应变诱导石墨烯晶界位错演化.  , 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [2] 董烨, 朱特, 宋亚敏, 叶凤娇, 张鹏, 杨启贵, 刘福雁, 陈雨, 曹兴忠. 低活化马氏体钢中位错对氦辐照缺陷的影响.  , 2023, 72(18): 187801. doi: 10.7498/aps.72.20230694
    [3] 张博佳, 安敏荣, 胡腾, 韩腊. 镁中位错和非晶作用机制的分子动力学模拟.  , 2022, 71(14): 143101. doi: 10.7498/aps.71.20212318
    [4] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟.  , 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [5] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟.  , 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [6] 刘思冕, 韩卫忠. 金属材料界面与辐照缺陷的交互作用机理.  , 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [7] 高英俊, 秦河林, 周文权, 邓芊芊, 罗志荣, 黄创高. 高温应变下的晶界湮没机理的晶体相场法研究.  , 2015, 64(10): 106105. doi: 10.7498/aps.64.106105
    [8] 邵宇飞, 杨鑫, 李久会, 赵星. Cu刃型扩展位错附近局部应变场的原子模拟研究.  , 2014, 63(7): 076103. doi: 10.7498/aps.63.076103
    [9] 陈丽群, 于涛, 彭小芳, 刘健. 难熔元素钨在NiAl位错体系中的占位及对键合性质的影响.  , 2013, 62(11): 117101. doi: 10.7498/aps.62.117101
    [10] 李联和, 刘官厅. 一维六方准晶中螺形位错与楔形裂纹的相互作用.  , 2012, 61(8): 086103. doi: 10.7498/aps.61.086103
    [11] 陆怀宝, 黎军顽, 倪玉山, 梅继法, 王洪生. 体心立方金属钽Ⅱ型裂纹尖端缺陷萌生的多尺度分析.  , 2011, 60(10): 106101. doi: 10.7498/aps.60.106101
    [12] 周春兰, 励旭东, 王文静, 赵雷, 李海玲, 刁宏伟, 曹晓宁. 氧化随机织构硅表面对单晶硅太阳电池性能的影响研究.  , 2011, 60(3): 038201. doi: 10.7498/aps.60.038201
    [13] 方步青, 卢果, 张广财, 许爱国, 李英骏. 铜晶体中类层错四面体的结构及其演化.  , 2009, 58(7): 4862-4871. doi: 10.7498/aps.58.4862
    [14] 张曾, 张荣, 谢自力, 刘斌, 修向前, 李弋, 傅德颐, 陆海, 陈鹏, 韩平, 郑有炓, 汤晨光, 陈涌海, 王占国. 厚度对MOCVD生长InN薄膜位错特性与光电性质的影响.  , 2009, 58(5): 3416-3420. doi: 10.7498/aps.58.3416
    [15] 徐振海, 袁林, 单德彬, 郭斌. 单晶铜纳米线屈服机理的原子模拟研究.  , 2009, 58(7): 4835-4839. doi: 10.7498/aps.58.4835
    [16] 江慧丰, 张青川, 陈学东, 范志超, 陈忠家, 伍小平. 位错与溶质原子间动态相互作用的数值模拟研究.  , 2007, 56(6): 3388-3392. doi: 10.7498/aps.56.3388
    [17] 孙 蔚, 王清周, 韩福生. 石墨颗粒/CuAlMn形状记忆合金复合材料中的位错内耗峰.  , 2007, 56(2): 1020-1026. doi: 10.7498/aps.56.1020
    [18] 邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为.  , 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [19] 张国英, 刘春明, 张 辉. 钢铁材料组织超细化机理的电子理论研究.  , 2005, 54(2): 875-879. doi: 10.7498/aps.54.875
    [20] 罗诗裕, 邵明珠, 韦洛霞, 刘曾荣. 位错动力学与系统的全局分叉.  , 2004, 53(6): 1940-1945. doi: 10.7498/aps.53.1940
计量
  • 文章访问数:  6498
  • PDF下载量:  503
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-13
  • 修回日期:  2013-06-05
  • 刊出日期:  2013-09-05

/

返回文章
返回
Baidu
map