-
对TiO2粉末进行了空气和真空条件下从室温到1200℃的加热原位X射线衍射实验, 得到了空气和真空条件下微米级锐钛矿颗粒转变为金红石的起始温度分别为850℃ 和855℃; 分别修正了空气条件下锐钛矿在(27850℃)范围和金红石在(9001200℃) 范围内的晶胞参数和真空条件下锐钛矿在(27850℃)范围和金红石在(9501200℃) 范围的晶胞参数, 从而得到了晶胞参数随温度变化的关系, 得到了锐钛矿和金红石在空气中和真空中的热膨胀系数, 并总结了热膨胀系数随温度变化的规律. 室温下锐钛矿在空气条件下的热膨胀系数为 a=4.5506310-6/℃, c=7.754310-6/℃, =16.8583610-6/℃; 真空下为 a=4.6942910-6/℃, c=9.0285010-6/℃, =18.6968810-6/℃. 室温下, 金红石在空气条件下的热膨胀系数为 a=6.8124310-6/℃, c=8.7164410-6/℃, =22.2217810-6/℃; 真空条件下为 a=6.0583410-6/℃, c= 8.3928010-6/℃, =20.5236210-6/℃.In situ X-ray diffraction patterns of the powder titania polymorphs are recorded in a temperature range from room temperature (RT) to 1200℃ in static air and vacuum. The results show that the temperature converting anatase into rutile is at 850℃ in static air and at 855℃ in vacuum. Lattice parameters for anatase (RT-850℃) and rutile (RT, 900-1200℃) in static air and those for anatase (27-850℃) and rutile (950-1200℃) in vacuum are refined. The variations of lattice parameters of anatase and rutile with temperature (℃) are therefore well described. Linear () and volume () thermal expansion coefficients of anatase (RT-850℃) and rutile (RT, 900-1200℃) are calculated. The change laws of and with temperature for anatase and rutile in static air and vacuum are summarized. At RT, the thermal expansion coefficients for anatase are a=4.5506310-6/℃, c=7.754310-6/℃, and =16.8583610-6/℃ in static air and a=4.6942910-6/℃, c=9.0285010-6/℃, and =18.6968810-6/℃ in vacuum while those for rutile are a=6.8124310-6/℃, c=8.7164410-6/℃, and =22.2217810-6/℃ in static air and a=6.0583410-6/℃, c=8.3928010-6/℃, and =20.5236210-6/℃ in vacuum, respectively.
-
Keywords:
- TiO2 /
- in situ X-ray diffraction /
- phase transition /
- thermal expansion
[1] Gratzel M 2004 J. Photochem. Photobiol. A Chemistry 164 3
[2] Shankara S K, Jaldappagari S, Prashanth S N 2010 Colloids Surf. B: Biointerfaces 78 217
[3] Tan B, Wu Y Y 2006 J. Phys. Chem. B 110 15932
[4] Ibrahim A. Al-Homoudi, Thakur J S, Naik R, Auner G W, Newaz G 2007 Appl. Surf. Sci. 253 8607
[5] Sheng Y, Zhou B, Liu Y H, Zhao X, Wang C Y, Pan Y, Wang Z C 2006 Mater. Lett. 60 1327
[6] Ikezawa S,Mutsuga F, Kubota T, Suzuki R, Baba K, Koh S, Yoshioka T, Nishiwaki A, Kida K, Ninomiya Y, Wakita K 2000 Vacuum 59 514
[7] Wang K J, Hu L H, Dai S Y 2005 Acta Phys. Sin. 54 1914 (in Chinese) [王孔嘉, 胡林华, 戴松元 2005 54 1914]
[8] Liang J K, Rao G H, Song G B, Liu F S, Peng T J 2002 Acta Phys. Sin. 51 2793 (in Chinese) [梁敬魁, 饶光辉, 宋功保, 刘福生, 彭同江 2002 51 2793]
[9] Shanaghi A, Sabour A R, Shahrabi T, Aliofkhazraee M 2009 Protect. Metals Phys. Chem. Surf. 45 305
[10] Abdel Aal A 2008 Mater. Sci. Eng. A 474 181
[11] Shannon R D, Pask J A 1965 J. Am. Ceram. Soc. 48 391
[12] José Manuel G A, Vicente S E, Guido B 1995 J. Mater. Chem. 5 1245
[13] Gribb A A, Banfield J F 1997 Am. Mineral. 82 717
[14] Balikdjian J P, Davidson A, Launay S, Eckert H, Che M 2000 J. Phys. Chem. B 104 8931
[15] Jagtap N, Bhagwat M, Awati P, Ramaswamy V 2005 Thermochim. Acta 47 37
[16] Zheng Y F, Li G H, Tian W, Ma C A 2007 Chin. J. Inorganic Chem. 23 1121 (in Chinese) [郑遗凡, 李国华, 田伟, 马淳安 2007 无机化学学报 23 1121]
[17] Céline P, Renaud R, Durupthy O, Cassaignon S, Jolivet J P 2010 Solid State Sci. 12 989
[18] Ma L J, Guo L J 2011 Spectroscopy and Spectral Analysis 31 1133 (in Chinese) [马利静, 郭烈锦 2011 光谱与光谱学分析 31 1133]
[19] Cromer D T, Herrington K 1955 J. Am. Chem. Soc. 77 4708
[20] Rao K V K, Naidu S V N, Iyengar L 1970 J. Am. Ceram. Soc. 53 124
[21] Horn M, Schwerdtfdger C F 1972 Z. Kristallogr. 136 273
[22] Meagher E P, Lager G A 1979 Can. Mineral. 17 77
[23] Sugiyama K, Takeuchi Y 1991 Z. Kristallogr. 194 305
[24] Hummer D R, Heaney P J, Post J E 2007 Powder Diffr. 22 352
[25] Wang H J 1994 J. Appl. Crystallogr. 27 716
[26] Wang H J, Zhou J 2000 J. Appl. Crystallogr. 33 1128
-
[1] Gratzel M 2004 J. Photochem. Photobiol. A Chemistry 164 3
[2] Shankara S K, Jaldappagari S, Prashanth S N 2010 Colloids Surf. B: Biointerfaces 78 217
[3] Tan B, Wu Y Y 2006 J. Phys. Chem. B 110 15932
[4] Ibrahim A. Al-Homoudi, Thakur J S, Naik R, Auner G W, Newaz G 2007 Appl. Surf. Sci. 253 8607
[5] Sheng Y, Zhou B, Liu Y H, Zhao X, Wang C Y, Pan Y, Wang Z C 2006 Mater. Lett. 60 1327
[6] Ikezawa S,Mutsuga F, Kubota T, Suzuki R, Baba K, Koh S, Yoshioka T, Nishiwaki A, Kida K, Ninomiya Y, Wakita K 2000 Vacuum 59 514
[7] Wang K J, Hu L H, Dai S Y 2005 Acta Phys. Sin. 54 1914 (in Chinese) [王孔嘉, 胡林华, 戴松元 2005 54 1914]
[8] Liang J K, Rao G H, Song G B, Liu F S, Peng T J 2002 Acta Phys. Sin. 51 2793 (in Chinese) [梁敬魁, 饶光辉, 宋功保, 刘福生, 彭同江 2002 51 2793]
[9] Shanaghi A, Sabour A R, Shahrabi T, Aliofkhazraee M 2009 Protect. Metals Phys. Chem. Surf. 45 305
[10] Abdel Aal A 2008 Mater. Sci. Eng. A 474 181
[11] Shannon R D, Pask J A 1965 J. Am. Ceram. Soc. 48 391
[12] José Manuel G A, Vicente S E, Guido B 1995 J. Mater. Chem. 5 1245
[13] Gribb A A, Banfield J F 1997 Am. Mineral. 82 717
[14] Balikdjian J P, Davidson A, Launay S, Eckert H, Che M 2000 J. Phys. Chem. B 104 8931
[15] Jagtap N, Bhagwat M, Awati P, Ramaswamy V 2005 Thermochim. Acta 47 37
[16] Zheng Y F, Li G H, Tian W, Ma C A 2007 Chin. J. Inorganic Chem. 23 1121 (in Chinese) [郑遗凡, 李国华, 田伟, 马淳安 2007 无机化学学报 23 1121]
[17] Céline P, Renaud R, Durupthy O, Cassaignon S, Jolivet J P 2010 Solid State Sci. 12 989
[18] Ma L J, Guo L J 2011 Spectroscopy and Spectral Analysis 31 1133 (in Chinese) [马利静, 郭烈锦 2011 光谱与光谱学分析 31 1133]
[19] Cromer D T, Herrington K 1955 J. Am. Chem. Soc. 77 4708
[20] Rao K V K, Naidu S V N, Iyengar L 1970 J. Am. Ceram. Soc. 53 124
[21] Horn M, Schwerdtfdger C F 1972 Z. Kristallogr. 136 273
[22] Meagher E P, Lager G A 1979 Can. Mineral. 17 77
[23] Sugiyama K, Takeuchi Y 1991 Z. Kristallogr. 194 305
[24] Hummer D R, Heaney P J, Post J E 2007 Powder Diffr. 22 352
[25] Wang H J 1994 J. Appl. Crystallogr. 27 716
[26] Wang H J, Zhou J 2000 J. Appl. Crystallogr. 33 1128
计量
- 文章访问数: 8026
- PDF下载量: 712
- 被引次数: 0