搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正极性纳秒脉冲电压下变压器油中流注放电仿真研究

李元 穆海宝 邓军波 张冠军 王曙鸿

引用本文:
Citation:

正极性纳秒脉冲电压下变压器油中流注放电仿真研究

李元, 穆海宝, 邓军波, 张冠军, 王曙鸿

Simulational study on streamer discharge in transformer oil under positive nanosecond pulse voltage

Li Yuan, Mu Hai-Bao, Deng Jun-Bo, Zhang Guan-Jun, Wang Shu-Hong
PDF
导出引用
  • 建立了二维轴对称流体模型, 仿真研究了正极性纳秒脉冲电压下变压器油中针-板电极流注放电的起始与发展过程, 得到了不同的外施电压幅值、脉冲上升沿时间与电极间隙距离下油中流注放电的形貌、 电场强度与空间电荷密度分布等. 仿真结果表明: 空间电荷加强了流注头部前方电场, 使流注通道更易于向前推进, 形成"电离波"; 随着外施电压幅值升高, 流注发展的平均速度显著变大; 较陡的脉冲上升沿形成的放电半径较大, 对应的最大电场强度值变小; 随着电极间隙距离的增加, 流注发展平均速度变快. 仿真显示纳秒脉冲下放电中油温无明显升高, 表明此类放电过程没有明显的油气化现象. 我们认为, 场致电离是油中带电粒子产生的主导机制; 空间电荷效应增强流注前方电场使得电离进一步发展, 最终导致击穿. 本研究有助于加深对变压器油中放电起始、发展直至击穿过程的认识以及对液体电介质中电离机制的理解.
    In this paper, we investigate the streamer discharge process in transformer oil under positive nanosecond pulse voltage through developing a two-dimensional axially symmetric fluid model and simulating the physics of discharge inception and propagation. The streamer discharge profile and distributions of electric field and space charge density are obtained under different conditions such as the amplitude of applied voltage, rise time and gap distance. Simulation results show that space charges enhance the front field of streamer head, which is conducive to the longer propagation of discharge channel, therefore "ionization wave" is formed. The magnitude and rise time of applied voltage have evident influences on the average speed of streamer propagation. It can be observed that the higher the applied impulse voltage, the faster the streamer propagates, and the steeper the rise time of applied impulse, when streamer arrives at the same position, the larger the discharging radius will be and the smaller maximal electric field will be. The cases of different gap distances indicate that longer gap distance corresponds to a faster average speed of streamer. It is considered that field-dependent molecular ionization predominates the charge generation mechanism of streamer discharge process in transformer oil, and space charge effect contributes to further developing ionization until the whole gap eventually breakdowns. The study is dedicated to the better understanding of the process from inception to breakdown of discharging in transformer oil, as well as ionization mechanism in liquid dielectric.
    • 基金项目: 国家杰出青年科学基金(批准号: 51125029)资助的课题.
    • Funds: Project supported by the National Natural Science Fund for Distinguished Young Scholars of China (Grant No. 51125029).
    [1]

    Wang Y 1991 High Power Pulsed Power Supply (Beijing: Atomic Energy Press) pp5-11 (in Chinese) [王莹 1991 高功率脉冲电源(北京: 原子能出版社)第5–11页]

    [2]

    Zhou Y X, Sha Y C, Nie D X, Wu Z R, Deng J G, Lu L C 2012 High Voltage Engineering 38 1163 (in Chinese) [周远翔, 沙彦超, 聂德鑫, 伍志荣, 邓建刚, 卢理成 2012 高电压技术 38 1163]

    [3]

    Wang W R, He D H 1985 High Voltage Engineering 4 24 (in Chinese) [王文瑞, 何大海 1985 高电压技术 4 24]

    [4]

    Wang Y, Shao T, Yan P, Huang W L, Zhang S C, Sun G S 2005 High Voltage Apparatus 41 1 (in Chinese) [王钰, 邵涛, 严萍, 黄文力, 张适昌, 孙广生 2005 高压电器 41 1]

    [5]

    Lehr J M, Agee F J, Copeland R, Prather W D 1998 IEEE Trans. Dielectr. Insul. 5 857

    [6]

    Huang L W, Sun G S, Wang Y, Yan P 2005 High Voltage Apparatus 41 131 (in Chinese) [黄文力, 孙广生, 王钰, 严萍 2005 高压电器 41 131]

    [7]

    Zhang J Q, Jiang X L, Chen Z G 2006 High Power Laser and Particle Beams 18 1053 (in Chinese) [张晋琪, 蒋兴良, 陈志刚 2006 强激光与离子束 18 1053]

    [8]

    Zhang C, Shao T, Niu Z, Zhang D D, Wang Y, Yan P 2012 Acta Phys. Sin. 61 035202 (in Chinese) [张程, 邵涛, 牛铮, 张东东, 王钰, 严萍 2012 61 035202]

    [9]

    Zhang Y H, Ma Q S, Xiang F, Gan Y Q, Chang A B, Liu Z, Zhou C M 2005 Acta Phys. Sin. 54 3111 (in Chinese) [张永辉, 马乔生, 向飞, 甘延青, 常安碧, 刘忠, 周传明 2005 54 3111]

    [10]

    L X G, Ren C S, Ma T C, Zhu H L, Qian M Y, Wang D Z 2010 Acta Phys. Sin. 59 7917 (in Chinese) [吕晓桂, 任春生, 马腾才, 朱海龙, 钱沐扬, 王德真 2010 59 7917]

    [11]

    IEC Standard #60897 (1987) Methods for the Determination of Lightning Impulse Breakdown Voltage of Insulating Liquid.

    [12]

    Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2010 J. Phys. D: Appl. Phys. 44 015203

    [13]

    Morrow R, Lowke J J 1997 J. Phys. D: Appl. Phys. 30 614

    [14]

    Shao X J, Ma Y, Li Y X, Zhang G J 2010 Acta Phys. Sin. 59 8747 (in Chinese) [邵先军, 马跃, 李娅西, 张冠军 2010 59 8747]

    [15]

    Jadidian J, Zahn M 2011 Conference Proceedings of International Symposium on Electrical Insulating Materials 2011 Tokyo, September 6-11, 1999 p506

    [16]

    Qian J, Joshi R P, Schamiloglu E, Gaudet J, Woodworth J, Lehr J 2006 J. Phys. 39 359

    [17]

    Lesaint O, Massala G 1998 IEEE Trans. Dielectr. Insul. 5 360

    [18]

    Lundgaard L, Linhjell D, Berg G, Sigmond S 1998 IEEE Trans. Dielectr. Insul. 5 388

    [19]

    Kulikovsky A A 1997 J. Phys. D: Appl. Phys. 30 441

    [20]

    Harada M, Ohga Y, Watanabe I, Watarai H 1999 Chem. Phys. Lett. 303 489

    [21]

    Smalo H S, Hestad o, Ingebrigtsen S, Åstrand P 2011 J. Appl. Phys. 109 073306

    [22]

    Tobazéon R 1994 IEEE Trans. Dielec. Electr. Insul. 1 1132

    [23]

    Wang X X, Lu M Z, Pu Y K 2002 Acta Phys. Sin. 51 2778 (in Chinese) [王新新, 芦明泽, 蒲以康 2002 51 2778]

    [24]

    Shao T, Sun G S, Yan P, Gu C, Zhang S C 2006 Acta Phys. Sin. 55 5964 (in Chinese) [邵涛, 孙广生, 严萍, 谷琛, 张适昌 2006 55 5964]

    [25]

    Halpern B, Gomer R 1969 J. Chem. Phys. 51 1048

    [26]

    Béroual A, Tobazéon R 1986 IEEE Trans. Dielec. Electr. Insul. E1-21 613

    [27]

    Tobazéon R, Filippini J C, Marteau C 1994 IEEE Trans. Dielec. Electr. Insul. 1 1000

    [28]

    Zener C 1934 Proc. R. Soc. London A 145 523

    [29]

    Jadidian J, Zahn M, Lavesson N, Widlund O, Borg K 2012 IEEE Trans. Plasma Sci. 40 909

    [30]

    Zhang Z H, Shao X J, Zhang G J, Li Y X, Peng Z Y 2012 Acta Phys. Sin. 61 045205 (in Chinese) [张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕 2012 61 045205]

    [31]

    Chen Y H, Fan B C, Chen Z H, Zhou B M 2008 Acta Phys. Sin. 57 064806 (in Chinese) [陈耀慧, 范宝春, 陈志华, 周本谋 2008 57 064806]

    [32]

    Devins J C, Rzad S J, Schwabe R J 1981 J. Phys. D: Appl. Phys. 52 4531

    [33]

    Lesaint O, Tobazéon R 1988 IEEE Trans. Dielectr. Insul. 23 941

  • [1]

    Wang Y 1991 High Power Pulsed Power Supply (Beijing: Atomic Energy Press) pp5-11 (in Chinese) [王莹 1991 高功率脉冲电源(北京: 原子能出版社)第5–11页]

    [2]

    Zhou Y X, Sha Y C, Nie D X, Wu Z R, Deng J G, Lu L C 2012 High Voltage Engineering 38 1163 (in Chinese) [周远翔, 沙彦超, 聂德鑫, 伍志荣, 邓建刚, 卢理成 2012 高电压技术 38 1163]

    [3]

    Wang W R, He D H 1985 High Voltage Engineering 4 24 (in Chinese) [王文瑞, 何大海 1985 高电压技术 4 24]

    [4]

    Wang Y, Shao T, Yan P, Huang W L, Zhang S C, Sun G S 2005 High Voltage Apparatus 41 1 (in Chinese) [王钰, 邵涛, 严萍, 黄文力, 张适昌, 孙广生 2005 高压电器 41 1]

    [5]

    Lehr J M, Agee F J, Copeland R, Prather W D 1998 IEEE Trans. Dielectr. Insul. 5 857

    [6]

    Huang L W, Sun G S, Wang Y, Yan P 2005 High Voltage Apparatus 41 131 (in Chinese) [黄文力, 孙广生, 王钰, 严萍 2005 高压电器 41 131]

    [7]

    Zhang J Q, Jiang X L, Chen Z G 2006 High Power Laser and Particle Beams 18 1053 (in Chinese) [张晋琪, 蒋兴良, 陈志刚 2006 强激光与离子束 18 1053]

    [8]

    Zhang C, Shao T, Niu Z, Zhang D D, Wang Y, Yan P 2012 Acta Phys. Sin. 61 035202 (in Chinese) [张程, 邵涛, 牛铮, 张东东, 王钰, 严萍 2012 61 035202]

    [9]

    Zhang Y H, Ma Q S, Xiang F, Gan Y Q, Chang A B, Liu Z, Zhou C M 2005 Acta Phys. Sin. 54 3111 (in Chinese) [张永辉, 马乔生, 向飞, 甘延青, 常安碧, 刘忠, 周传明 2005 54 3111]

    [10]

    L X G, Ren C S, Ma T C, Zhu H L, Qian M Y, Wang D Z 2010 Acta Phys. Sin. 59 7917 (in Chinese) [吕晓桂, 任春生, 马腾才, 朱海龙, 钱沐扬, 王德真 2010 59 7917]

    [11]

    IEC Standard #60897 (1987) Methods for the Determination of Lightning Impulse Breakdown Voltage of Insulating Liquid.

    [12]

    Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2010 J. Phys. D: Appl. Phys. 44 015203

    [13]

    Morrow R, Lowke J J 1997 J. Phys. D: Appl. Phys. 30 614

    [14]

    Shao X J, Ma Y, Li Y X, Zhang G J 2010 Acta Phys. Sin. 59 8747 (in Chinese) [邵先军, 马跃, 李娅西, 张冠军 2010 59 8747]

    [15]

    Jadidian J, Zahn M 2011 Conference Proceedings of International Symposium on Electrical Insulating Materials 2011 Tokyo, September 6-11, 1999 p506

    [16]

    Qian J, Joshi R P, Schamiloglu E, Gaudet J, Woodworth J, Lehr J 2006 J. Phys. 39 359

    [17]

    Lesaint O, Massala G 1998 IEEE Trans. Dielectr. Insul. 5 360

    [18]

    Lundgaard L, Linhjell D, Berg G, Sigmond S 1998 IEEE Trans. Dielectr. Insul. 5 388

    [19]

    Kulikovsky A A 1997 J. Phys. D: Appl. Phys. 30 441

    [20]

    Harada M, Ohga Y, Watanabe I, Watarai H 1999 Chem. Phys. Lett. 303 489

    [21]

    Smalo H S, Hestad o, Ingebrigtsen S, Åstrand P 2011 J. Appl. Phys. 109 073306

    [22]

    Tobazéon R 1994 IEEE Trans. Dielec. Electr. Insul. 1 1132

    [23]

    Wang X X, Lu M Z, Pu Y K 2002 Acta Phys. Sin. 51 2778 (in Chinese) [王新新, 芦明泽, 蒲以康 2002 51 2778]

    [24]

    Shao T, Sun G S, Yan P, Gu C, Zhang S C 2006 Acta Phys. Sin. 55 5964 (in Chinese) [邵涛, 孙广生, 严萍, 谷琛, 张适昌 2006 55 5964]

    [25]

    Halpern B, Gomer R 1969 J. Chem. Phys. 51 1048

    [26]

    Béroual A, Tobazéon R 1986 IEEE Trans. Dielec. Electr. Insul. E1-21 613

    [27]

    Tobazéon R, Filippini J C, Marteau C 1994 IEEE Trans. Dielec. Electr. Insul. 1 1000

    [28]

    Zener C 1934 Proc. R. Soc. London A 145 523

    [29]

    Jadidian J, Zahn M, Lavesson N, Widlund O, Borg K 2012 IEEE Trans. Plasma Sci. 40 909

    [30]

    Zhang Z H, Shao X J, Zhang G J, Li Y X, Peng Z Y 2012 Acta Phys. Sin. 61 045205 (in Chinese) [张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕 2012 61 045205]

    [31]

    Chen Y H, Fan B C, Chen Z H, Zhou B M 2008 Acta Phys. Sin. 57 064806 (in Chinese) [陈耀慧, 范宝春, 陈志华, 周本谋 2008 57 064806]

    [32]

    Devins J C, Rzad S J, Schwabe R J 1981 J. Phys. D: Appl. Phys. 52 4531

    [33]

    Lesaint O, Tobazéon R 1988 IEEE Trans. Dielectr. Insul. 23 941

  • [1] 艾飞, 刘志兵, 张远涛. 结合机器学习的大气压介质阻挡放电数值模拟研究.  , 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [2] 齐兵, 田晓, 王静, 王屹山, 司金海, 汤洁. 射频/直流驱动大气压氩气介质阻挡放电的一维仿真研究.  , 2022, 71(24): 245202. doi: 10.7498/aps.71.20221361
    [3] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电模拟.  , 2022, 71(2): 025201. doi: 10.7498/aps.71.20211150
    [4] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法.  , 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [5] 王倩, 赵江山, 范元媛, 郭馨, 周翊. 不同缓冲气体中ArF准分子激光系统放电特性分析.  , 2020, 69(17): 174207. doi: 10.7498/aps.69.20200087
    [6] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究.  , 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [7] 涂婧怡, 陈赦, 汪沨. 光电离速率影响大气压空气正流注分支的机理研究.  , 2019, 68(9): 095202. doi: 10.7498/aps.68.20190060
    [8] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟.  , 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [9] 李晗蔚, 孙安邦, 张幸, 姚聪伟, 常正实, 张冠军. 针-板空气间隙流注放电起始过程的三维PIC/MCC仿真研究.  , 2018, 67(4): 045101. doi: 10.7498/aps.67.20172309
    [10] 姚聪伟, 马恒驰, 常正实, 李平, 穆海宝, 张冠军. 大气压介质阻挡辉光放电脉冲的阴极位降区特性及其影响因素的数值仿真.  , 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [11] 何寿杰, 张钊, 赵雪娜, 李庆. 微空心阴极维持辉光放电的时空特性.  , 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [12] 左应红, 王建国, 范如玉. 空间电荷效应对热场致发射中诺廷汉效应的影响.  , 2013, 62(24): 247901. doi: 10.7498/aps.62.247901
    [13] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究.  , 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [14] 张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕. 大气压氩气介质阻挡辉光放电的一维仿真研究.  , 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [15] 张岭梓, 左玉华, 曹权, 薛春来, 成步文, 张万昌, 曹学蕾, 王启明. 单载流子光电探测器的高速及高饱和功率的研究.  , 2012, 61(13): 138501. doi: 10.7498/aps.61.138501
    [16] 左应红, 王建国, 范如玉. 二极管间隙距离对场致发射过程中空间电荷效应的影响.  , 2012, 61(21): 215202. doi: 10.7498/aps.61.215202
    [17] 彭凯, 刘大刚. 三维热场致发射模型的数值模拟与研究.  , 2012, 61(12): 121301. doi: 10.7498/aps.61.121301
    [18] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究.  , 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [19] 袁永腾, 郝轶聃, 赵宗清, 侯立飞, 缪文勇. 空间电荷效应对X射线条纹相机动态范围影响的研究.  , 2010, 59(10): 6963-6968. doi: 10.7498/aps.59.6963
    [20] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟.  , 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
计量
  • 文章访问数:  8258
  • PDF下载量:  1363
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-02
  • 修回日期:  2013-03-04
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map