-
利用流体-亚稳态原子传输混合模型研究了氩气矩形空心阴极放电稳态时的参数. 数值计算得到了压强为10 Torr时的电势、电子、离子和亚稳态氩原子密度以及电子平均能量的分布. 结果表明电子和离子密度峰值为4.7×1012 cm-3, 亚稳态原子密度峰值为2.1×1013 cm-3. 本文同时对流体-亚稳态原子传输混合模型和单一流体模型模拟得到的放电参数进行了比较. 结果表明, 分步电离是新电子产生的重要来源, 亚稳态原子对空心阴极放电特性有重要影响. 与单一流体模型相比, 混合模型计算得到的电子密度升高, 阴极鞘层宽度和电子平均能量降低.
-
关键词:
- 空心阴极放电 /
- 流体-亚稳态原子传输模型 /
- 电子密度 /
- 分步电离
The characteristics of rectangular hollow cathode discharge are studied based on a fluid model combined with a transport model for metastable Ar atoms in argon. The distribution of potential, density of electrons and ions, and the density of metastable atoms are calculated at a pressure of 10 Torr. The peak density of electron and ion is 4.7×1012 cm-3, and the peak density of metastable atoms is 2.1×1013 cm-3. Results obtained in terms of fluid-metastable hybrid model are compared with that in terms of the fluid model, which show that the electron produced by stepwise ionization is one of the important source of new electrons, and the metastable atoms have an obvious effect on the hollow cathode discharge. Compared with the results calculated in terms of fluid model, the density of electrons obtained in terms of hybrid model increases, and the depth of cathode sheath and the averaged electron energy decrease.-
Keywords:
- hollow cathode discharge /
- fluid-metastable atoms transport model /
- density of electrons /
- stepwise ionization
[1] Weinstein V, Steers E B M, Smid P, Pickering J C, Mushtaq S 2010 J. Anal. At. Spectrom 25 1283
[2] BeckerK H, Schoenbach K H, Eden J G 2006 J. Phys. D 39 R55
[3] Lazzaroni C, Chabert P 2011 J. Phys. D 44 445202
[4] Gu X W, Meng L, Yan Y, Sun Y Q 2009 Contrib. Plasma. Phys. 49 40
[5] Zou B, Shi Y C, Lu Y J 2009 Journal of Donghua university (Natural Science) 35 114 (in Chiense) 邹彬, 施芸城, 陆彦钧 2009 东华大学学报(自然科学版) 35 114
[6] Xia G Q, Xue W H, Chen M L, Zhu Y, Zhu G Q 2011 Acta Phys. Sin. 60 015201 (in Chinese) [夏广庆, 薛伟华, 陈茂林,朱雨, 朱国强 2011 60 015201]
[7] Zhang X L,Wang X B, Liu F J, Lu Y Z 2009 IEEE Trans. Plsama. Sci. 37 2055
[8] Donkó Z 1998 Phys. Rev. E 57 7126
[9] Kutasi K, Donkó Z 2000 J. Phys. D 33 1081
[10] Ward A L 1962 J. Appl. Phys. 33 2789
[11] A Bogaerts, R Gijbels. 1995 Phys. Rev. A 52 3743
[12] He S J , Ouyang J T, He F, Li S 2011 Phys. Plasma. 18 032102
[13] Sadeghi N, Cheaib M, Setser D W 1989 J. Chem. Phys. 90 219
[14] Lymberopoulos D P, Economou D J 1993 J. Appl. Phys 73 3668
[15] Carman R J. 1989 J. Phys. D 22 55
[16] Quitzau M, Kersten H 2012 Eur. Phys. J. D 66 47
-
[1] Weinstein V, Steers E B M, Smid P, Pickering J C, Mushtaq S 2010 J. Anal. At. Spectrom 25 1283
[2] BeckerK H, Schoenbach K H, Eden J G 2006 J. Phys. D 39 R55
[3] Lazzaroni C, Chabert P 2011 J. Phys. D 44 445202
[4] Gu X W, Meng L, Yan Y, Sun Y Q 2009 Contrib. Plasma. Phys. 49 40
[5] Zou B, Shi Y C, Lu Y J 2009 Journal of Donghua university (Natural Science) 35 114 (in Chiense) 邹彬, 施芸城, 陆彦钧 2009 东华大学学报(自然科学版) 35 114
[6] Xia G Q, Xue W H, Chen M L, Zhu Y, Zhu G Q 2011 Acta Phys. Sin. 60 015201 (in Chinese) [夏广庆, 薛伟华, 陈茂林,朱雨, 朱国强 2011 60 015201]
[7] Zhang X L,Wang X B, Liu F J, Lu Y Z 2009 IEEE Trans. Plsama. Sci. 37 2055
[8] Donkó Z 1998 Phys. Rev. E 57 7126
[9] Kutasi K, Donkó Z 2000 J. Phys. D 33 1081
[10] Ward A L 1962 J. Appl. Phys. 33 2789
[11] A Bogaerts, R Gijbels. 1995 Phys. Rev. A 52 3743
[12] He S J , Ouyang J T, He F, Li S 2011 Phys. Plasma. 18 032102
[13] Sadeghi N, Cheaib M, Setser D W 1989 J. Chem. Phys. 90 219
[14] Lymberopoulos D P, Economou D J 1993 J. Appl. Phys 73 3668
[15] Carman R J. 1989 J. Phys. D 22 55
[16] Quitzau M, Kersten H 2012 Eur. Phys. J. D 66 47
计量
- 文章访问数: 6285
- PDF下载量: 402
- 被引次数: 0