搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声波在含气泡液体中的线性传播

王勇 林书玉 张小丽

引用本文:
Citation:

声波在含气泡液体中的线性传播

王勇, 林书玉, 张小丽

Linear wave propagation in the bubbly liquid

Wang Yong, Lin Shu-Yu, Zhang Xiao-Li
PDF
导出引用
  • 为了探讨含气泡液体对声波传播的影响, 研究了声波在含气泡液体中的线性传播. 在建立含气泡液体的声学模型时引入气泡含量的影响,建立气泡模型时引用 Keller的气泡振动模型并同时考虑气泡间的声相互作用,得到了经过修正的气泡振动方程. 通过对含气泡液体的声传播方程和气泡振动方程联立并线性化求解,在满足 (ω R0)/c << 1 的前提下,得到了描述含气泡液体对声波传播的衰减系数和传播速度. 通过数值分析发现,在驱动声场频率一定的情况下,气泡含量的增加及气泡的变小均会导致衰减系数增加和声速减小;气泡的体积分数和大小一定时, 驱动声场频率在远小于气泡谐振频率的情况下,声速会随驱动频率的增加而减小; 气泡间的声相互作用对声波传播速度及含气泡液体衰减系数的影响不明显.最终认为气泡的大小、 数量和驱动声场频率是影响声波在含气泡液体中线性传播的主要因素.
    In order to get the factor of influence of bubbly liquid on the acoustic wave propagation, the linear wave propagation in bubbly liquid is studied. The influence of bubbles is taken into account when the acoustic model of bubbly liquid is established, and we can get the corrected oscillation equation of the bubble when the interaction of bubbles is taken into the Keller's model. One can get the acoustic attenuation coefficient and the sound speed of the bubbly liquid through solving the linearized equation of wave propagation of bubbly liquids and the oscillation equation of bubbles when (ωR0)/c << 1. After the numerical analysis, we find that the acoustic attenuation coefficient increases and the sound speed will turn smaller as the numbers of bubbles increases and the bubbles gets smaller when the driving frequency of sound field keeps constant; when the driving frequency is far bellow the resonance frequency of bubble and both the volume fraction and the size of bubbles are kept constant, the sound speed will changes in a way contrary to the case of driving frequency of sound field; it is not evident that the bubble interaction influences the acoustic attenuation coefficient and the sound speed. Finally, we deem that the volume concentration, the size of bubble and the driving frequency of sound field are the important parameters which determine the deviations of the sound speed and the attenuation from those of bubble-free water.
    • 基金项目: 研究生培养创新基金(陕西师范大学, 批准号: 2012CXB014)和国家自然科学基金 (批准号: 11174192)资助的课题.
    • Funds: Project supported by the Innovation Funds of Graduate Programs of Shaanxi Normal University, China (Grant No. 2012CXB014) and the National Natural Science Foundation of China (Grant No. 11174192).
    [1]

    Mallock A 1911 Proc. R. Soc. Lond. A 84 391

    [2]

    Wijngaarden L V 1972 Ann. Rev. Fluid Mech. 4 369

    [3]

    Caflisch R E, Miksis M J, Papanicolaou G C, Ting L 1985 J. Fluid Mech. 160 1

    [4]

    Caflisch R E, Miksis M J, Papanicolaou G C, Ting L 1985 J. Fluid Mech. 153 259

    [5]

    Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732

    [6]

    Prosperetti A, Crum L A, Commander K W 1988 J. Acoust. Soc. Am. 83 502

    [7]

    Li F X, Sun J C, Huang J Q 1998 J. Northwestern Polytech. Univ. 16 241 (in Chinese) [李福新, 孙进才, 黄景泉 1998 西北工业大学学报 16 241]

    [8]

    Kudryashov N A, Sinelshchikov D I 2010 Phys. Lett. A 374 2011

    [9]

    Kudryashov N A, Sinelshchikov D I 2010 Appl. Math. Comput. 217 414

    [10]

    Vanhille C, Campos-Pozuelo C 2009 Ultrason. Sonochem. 16 669

    [11]

    Vanhille C, Campos-Pozuelo C 2011 Ultrason. Sonochem. 18 679

    [12]

    Louisnard O 2012 Ultrason. Sonochem. 19 56

    [13]

    Zhang J, Zeng X W, Chen D, Zhang Z F 2012 Acta Phys. Sin. 61 184302 (in Chinese) [张军, 曾新吾, 陈聃, 张振福 2012 61 184302]

    [14]

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 104302 (in Chinese) [沈壮志, 林书玉 2011 60 104302]

    [15]

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 084302 (in Chinese) [沈壮志, 林书玉 2011 60 084302]

    [16]

    Zhang P L, Lin S Y 2009 Acta Phys. Sin. 58 7797 (in Chinese) [张鹏利, 林书玉 2009 58 7797]

    [17]

    Qian Z W 1981 Acta Phys. Sin. 30 442 (in Chinese) [钱祖文 1981 30 442]

    [18]

    Prosperetti A, Lezzi A 1986 J. Fluid Mech. 168 457

    [19]

    Foldy L L 1945 Phys. Rev. 67 107

    [20]

    Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732

    [21]

    Prosperetti A 1984 Ultrasonics 22 115

    [22]

    Prosperetti A 1977 J. Acoust. Soc. Am. 61 17

  • [1]

    Mallock A 1911 Proc. R. Soc. Lond. A 84 391

    [2]

    Wijngaarden L V 1972 Ann. Rev. Fluid Mech. 4 369

    [3]

    Caflisch R E, Miksis M J, Papanicolaou G C, Ting L 1985 J. Fluid Mech. 160 1

    [4]

    Caflisch R E, Miksis M J, Papanicolaou G C, Ting L 1985 J. Fluid Mech. 153 259

    [5]

    Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732

    [6]

    Prosperetti A, Crum L A, Commander K W 1988 J. Acoust. Soc. Am. 83 502

    [7]

    Li F X, Sun J C, Huang J Q 1998 J. Northwestern Polytech. Univ. 16 241 (in Chinese) [李福新, 孙进才, 黄景泉 1998 西北工业大学学报 16 241]

    [8]

    Kudryashov N A, Sinelshchikov D I 2010 Phys. Lett. A 374 2011

    [9]

    Kudryashov N A, Sinelshchikov D I 2010 Appl. Math. Comput. 217 414

    [10]

    Vanhille C, Campos-Pozuelo C 2009 Ultrason. Sonochem. 16 669

    [11]

    Vanhille C, Campos-Pozuelo C 2011 Ultrason. Sonochem. 18 679

    [12]

    Louisnard O 2012 Ultrason. Sonochem. 19 56

    [13]

    Zhang J, Zeng X W, Chen D, Zhang Z F 2012 Acta Phys. Sin. 61 184302 (in Chinese) [张军, 曾新吾, 陈聃, 张振福 2012 61 184302]

    [14]

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 104302 (in Chinese) [沈壮志, 林书玉 2011 60 104302]

    [15]

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 084302 (in Chinese) [沈壮志, 林书玉 2011 60 084302]

    [16]

    Zhang P L, Lin S Y 2009 Acta Phys. Sin. 58 7797 (in Chinese) [张鹏利, 林书玉 2009 58 7797]

    [17]

    Qian Z W 1981 Acta Phys. Sin. 30 442 (in Chinese) [钱祖文 1981 30 442]

    [18]

    Prosperetti A, Lezzi A 1986 J. Fluid Mech. 168 457

    [19]

    Foldy L L 1945 Phys. Rev. 67 107

    [20]

    Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732

    [21]

    Prosperetti A 1984 Ultrasonics 22 115

    [22]

    Prosperetti A 1977 J. Acoust. Soc. Am. 61 17

  • [1] 陈时, 张迪, 王成会, 张引红. 含混合气泡液体中声波共振传播的抑制效应.  , 2019, 68(7): 074301. doi: 10.7498/aps.68.20182299
    [2] 范雨喆, 陈宝伟, 李海森, 徐超. 丛聚的含气泡水对线性声传播的影响.  , 2018, 67(17): 174301. doi: 10.7498/aps.67.20180728
    [3] 李雪梅, 俞宇颖, 谭叶, 胡昌明, 张祖根, 蓝强, 傅秋卫, 景海华. Bi在固液混合相区的冲击参数测量及声速软化特性.  , 2018, 67(4): 046401. doi: 10.7498/aps.67.20172166
    [4] 王婷, 崔志文, 刘金霞, 王克协. 含少量气泡流体饱和孔隙介质中的弹性波.  , 2018, 67(11): 114301. doi: 10.7498/aps.67.20180209
    [5] 刘晓宇, 张国华, 孙其诚, 赵雪丹, 刘尚. 二维圆盘颗粒体系声学行为的数值研究.  , 2017, 66(23): 234501. doi: 10.7498/aps.66.234501
    [6] 郑广赢, 黄益旺. 气泡线性振动对含气泡水饱和多孔介质声传播的影响.  , 2016, 65(23): 234301. doi: 10.7498/aps.65.234301
    [7] 潘昊, 吴子辉, 胡晓棉. 非对称冲击-卸载实验中纵波声速的特征线分析方法.  , 2016, 65(11): 116201. doi: 10.7498/aps.65.116201
    [8] 张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军. 垂直载荷下颗粒物质的声波探测和非线性响应.  , 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [9] 瞿谱波, 关小伟, 张振荣, 王晟, 李国华, 叶景峰, 胡志云. 激光诱导热光栅光谱测温技术研究.  , 2015, 64(12): 123301. doi: 10.7498/aps.64.123301
    [10] 宋萍, 蔡灵仓, 李欣竹, 陶天炯, 赵信文, 王学军, 方茂林. 低孔隙度疏松锡的高压声速与相变.  , 2015, 64(10): 106401. doi: 10.7498/aps.64.106401
    [11] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭 华. 钒的高压声速测量.  , 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [12] 王勇, 林书玉, 张小丽. 含气泡液体中的非线性声传播.  , 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [13] 王勇, 林书玉, 莫润阳, 张小丽. 含气泡液体中气泡振动的研究.  , 2013, 62(13): 134304. doi: 10.7498/aps.62.134304
    [14] 郑鹤鹏, 蒋亦民, 彭政, 符力平. 颗粒固体弹性势能的声波性质.  , 2012, 61(21): 214502. doi: 10.7498/aps.61.214502
    [15] 张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛. 直剪颗粒体系声波探测.  , 2012, 61(23): 234501. doi: 10.7498/aps.61.234501
    [16] 宋萍, 王青松, 戴诚达, 蔡灵仓, 张毅, 翁继东. 低孔隙度疏松铝的高压声速与冲击熔化.  , 2011, 60(4): 046201. doi: 10.7498/aps.60.046201
    [17] 王新峰, 熊显潮, 高敏忠. 超声波流量计测量流体声速的实验方法.  , 2011, 60(11): 114303. doi: 10.7498/aps.60.114303
    [18] 朱 明, 王 殊, 王菽韬, 夏东海. 基于混合气体分子复合弛豫模型的一氧化碳浓度检测算法.  , 2008, 57(9): 5749-5755. doi: 10.7498/aps.57.5749
    [19] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速.  , 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
    [20] 卢义刚, 彭健新. 运用液体声学理论研究超临界二氧化碳的声特性.  , 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
计量
  • 文章访问数:  7424
  • PDF下载量:  773
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-20
  • 修回日期:  2012-10-10
  • 刊出日期:  2013-03-05

/

返回文章
返回
Baidu
map