-
现有的检测算法在实际的不确定海洋环境中会出现失配情况, 进而导致检测性能下降, 但是定量分析这种检测性能损失的工作却很少见, 因此本文定义了检测性能损失敏感度函数, 并给出了基于蒙特卡罗方法的计算方法.检测性能损失敏感度是一个表征海洋环境不确定度的物理量, 它反映了海洋参数变动和检测性能损失之间的关系.利用地中海某处海洋环境进行仿真, 针对各个海洋环境参数, 计算了全海域的检测性能敏感度. 结果表明: 1)检测性能损失呈现了很强的空间性, 在20 km处, 水面声速有4 m/s的变化下, 检测损失最小为1%, 而最大达到60%.声信道中的检测性能较为稳定, 其在远距离上更是如此; 2)各个海洋环境参数对检测性能损失有不同的影响, 水体声速剖面和第一层海底介质的声速和厚度是对检测性能影响最大的量; 3)环境参数敏感度呈现很强的频率特性, 海底底质参数包括底质厚度、密度和吸收系数等随着频率的升高对检测性能的损失影响变小.Existing detection methods have mismatch problem when applyed to the real uncertain ocean, which will lead to the detection performance degradation. However, there has been little work on defining the practical quantitative measures of environmental sensitivity. In this article we define a measure of environmental sensitivity for target detection performance loss in an uncertain ocean for realistic uncertainties in various environmental parameters (water-column sound speed profile and seabed geoacoustic properties). The Monte Carlo approach is used to transfer the environment uncertainty through the forward problem and quantify the resulting variability in the detection performance loss. The computer simulation is based on the Malta Plateau, a well-studied shallow-water region of the Mediterranean Sea. The simulation result shows that 1) the sensitivity is range and depth dependent and in the sound channel the sensitivity is much smaller than in other regions of the ocean; 2) the sound speed profile and the upper seabed layer are most sensitive parameters for the detection performance loss; 3) the sensitivity is frequency dependent. The seabed layer properties such as sediment thickness, density and attenuation coefficient have less influence on the detection as the frequency increases.
-
Keywords:
- detection performance degradation /
- environmental sensitivity /
- uncertain ocean environment
[1] Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Ocean. Eng. 18 401
[2] Pace N G, Jensen F B 2002 Impact of Littoral Environmental Variability of Acoustic Predictions and Sonar Performance (La Spezia, Italy: Kluwer Academic Publishers) p507
[3] Sha L W, Nolte L W 2005 J. Acoust. Soc. Am. 117 1942
[4] Schmidt H, Baggeroer A B, Kuperman W A, Scheer E K 1990 J. Acoust. Soc. Am. 88 1851
[5] Krolik J L 1992 J. Acoust. Soc. Am. 92 1408
[6] Lee N, Zurk L M, Ward J 1999 Signals, Systems and Computers, 1999 Conference Record of the Thirty-Third Asilomar Conference on Pacific Grove California, October 24-27, 1999 p876
[7] Richardson A M, Nolte L W 1991 J. Acoust. Soc. Am. 89 2280
[8] Shorey J A, Nolte L W, Krolik J L 1994 J. Comput. Acoust. 2 285
[9] Sibul L H 2006 J. Acoust. Soc. Am. 119 3342
[10] Culver R L, Camin H J 2008 J. Acoust. Soc. Am. 124 3619
[11] Ballard J A, Culver R L 2009 IEEE J. Ocean. Eng. 34 128
[12] Walker S C, Roux P, Kuperman W A 2005 J. Acoust. Soc. Am. 118 1518
[13] Wang H Z, Wang N, Gao D Z 2011 Chin. Phys. Lett. 28 114302
[14] Del Balzo D R, Feuillade C, Rowe M M 1988 J. Acoust. Soc. Am. 83 2180
[15] Tolstoy A 1989 J. Acoust. Soc. Am. 85 2394
[16] Zhao H F, Li J L, Gong X Y 2011 J. Harbin Eng. Univ. 32 200 (in Chinese) [赵航芳, 李建龙, 宫先仪 2011 哈尔滨工程大学学报 32 200]
[17] Kessel R T 1999 J. Acoust. Soc. Am. 105 122
[18] Dosso S E, Giles P M, Brooke G H, McCammon D F, Pecknold S, Hines P C 2007 J. Acoust. Soc. Am. 121 42
[19] Dosso S E, Morley M G, Giles P M, Brooke G H, McCammon D F, Pecknold S, Hines P C 2007 J. Acoust. Soc. Am. 122 2560
[20] Pecknold S P, Masui K W, Hines P C 2008 J. Acoust. Soc. Am. 124 EL110
[21] Finette S 2005 J. Acoust. Soc. Am. 117 997
[22] Porter M B 1991 The Kraken Normal Mode Program (La Spezia, Italy: SACLANT Underwater Acoustic Research Center)
[23] Jensen F B, Kuperman W A, Portor M B, Schmidt H 2000 Computational Ocean Acoustics (New York: American Institute of Physics) p67
[24] Kay S M 1993 Fundamentals of Statistical Signal Processing, Volume II: Detection Theory (Upper Saddle River, New Jersey: Prentice Hall) p34
-
[1] Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Ocean. Eng. 18 401
[2] Pace N G, Jensen F B 2002 Impact of Littoral Environmental Variability of Acoustic Predictions and Sonar Performance (La Spezia, Italy: Kluwer Academic Publishers) p507
[3] Sha L W, Nolte L W 2005 J. Acoust. Soc. Am. 117 1942
[4] Schmidt H, Baggeroer A B, Kuperman W A, Scheer E K 1990 J. Acoust. Soc. Am. 88 1851
[5] Krolik J L 1992 J. Acoust. Soc. Am. 92 1408
[6] Lee N, Zurk L M, Ward J 1999 Signals, Systems and Computers, 1999 Conference Record of the Thirty-Third Asilomar Conference on Pacific Grove California, October 24-27, 1999 p876
[7] Richardson A M, Nolte L W 1991 J. Acoust. Soc. Am. 89 2280
[8] Shorey J A, Nolte L W, Krolik J L 1994 J. Comput. Acoust. 2 285
[9] Sibul L H 2006 J. Acoust. Soc. Am. 119 3342
[10] Culver R L, Camin H J 2008 J. Acoust. Soc. Am. 124 3619
[11] Ballard J A, Culver R L 2009 IEEE J. Ocean. Eng. 34 128
[12] Walker S C, Roux P, Kuperman W A 2005 J. Acoust. Soc. Am. 118 1518
[13] Wang H Z, Wang N, Gao D Z 2011 Chin. Phys. Lett. 28 114302
[14] Del Balzo D R, Feuillade C, Rowe M M 1988 J. Acoust. Soc. Am. 83 2180
[15] Tolstoy A 1989 J. Acoust. Soc. Am. 85 2394
[16] Zhao H F, Li J L, Gong X Y 2011 J. Harbin Eng. Univ. 32 200 (in Chinese) [赵航芳, 李建龙, 宫先仪 2011 哈尔滨工程大学学报 32 200]
[17] Kessel R T 1999 J. Acoust. Soc. Am. 105 122
[18] Dosso S E, Giles P M, Brooke G H, McCammon D F, Pecknold S, Hines P C 2007 J. Acoust. Soc. Am. 121 42
[19] Dosso S E, Morley M G, Giles P M, Brooke G H, McCammon D F, Pecknold S, Hines P C 2007 J. Acoust. Soc. Am. 122 2560
[20] Pecknold S P, Masui K W, Hines P C 2008 J. Acoust. Soc. Am. 124 EL110
[21] Finette S 2005 J. Acoust. Soc. Am. 117 997
[22] Porter M B 1991 The Kraken Normal Mode Program (La Spezia, Italy: SACLANT Underwater Acoustic Research Center)
[23] Jensen F B, Kuperman W A, Portor M B, Schmidt H 2000 Computational Ocean Acoustics (New York: American Institute of Physics) p67
[24] Kay S M 1993 Fundamentals of Statistical Signal Processing, Volume II: Detection Theory (Upper Saddle River, New Jersey: Prentice Hall) p34
计量
- 文章访问数: 6571
- PDF下载量: 615
- 被引次数: 0