-
采用溶胶-凝胶方法成功制备了Sr的替代化合物Y1-xSrxCoO3 (x=0, 0.01, 0.05, 0.10, 0.15, 0.20), 系统地研究了20–720 K温度范围内Y1-xSrxCoO3的电阻率温度关系. 研究表明, 随着Sr的替代含量的增加, Y1-xSrxCoO3的电阻率迅速地降低, 这主要是由于载流子浓度的增加引起. 样品x=0和0.01在低于330和260 K的温度范围内, 电阻率与温度之间满足指数关系lnρ∝1/T, 获得导电激活能分别为0.2950和0.1461 eV. 然而, 实验显示lnρ∝1/T关系仅成立于重掺杂样品的高温区; 在低温区莫特定律lnρ∝T-1/4成立, 且表明重掺杂引入势垒, 导致大量局域态的形成. 根据莫特T-1/4定律拟合实验数据, 评估了局域态密度N(EF), 它随着掺杂量的增加而增加.The temperature dependences of electrical resistivity for Sr-substituted compounds Y1-xSrxCoO3 (x=0, 0.01, 0.05, 0.10, 0.15, 0.20), prepared successfully by sol-gel process, are investigated in a temperature range from 20 to 720 K. The results indicate that with the increase of doping content of Sr the resistivity of Y1-xSrxCoO3 decreases remarkably, which is found to be caused by the increase of carrier concentration. In a temperature range below 330 and 260 K for the sample x=0 and 0.01, the relationship of resistivity versus temperature processes exponential relationship lnρ∝1/T, with conduction activation energy 0.2950 and 0.1461 eV for the sample x=0 and 0.01 respectively. Moreover, experiments show that the relationship lnρ∝1/T exists only in high-temperature regime for the heavily doped samples; at low temperatures Mott’s law lnρ∝T-1/4 is observed, indicating that heavy doping produces strong potential, which leads to the formation of considerable localized state. By fitting the experimental data to Mott’s T-1/4 law, the density of localized states N(EF) at Fermi level is estimated, which is found to increase with doping content increasing.
-
Keywords:
- thermoelectric materials /
- sol-gel /
- YCoO3
[1] Liu Y, Qin X Y, Wang Y F, Xin H X, Zhang J, Li H J 2007 J. Appl. Phys. 101 083709
[2] Androulakis J, Migiakis P, Giapintzakis J 2004 Appl. Phys. Lett. 84 1099
[3] Berggold K, Kriener M, Zobel C, Reichl A, Reuther M, Muller R, Freimth A, Lotenz T 2005 Phys. Rev. B 72 155
[4] Moon J W, Seo W S, Okabe H, Okawa T, Oumotok K 2000 J. Matter Chem. 10 2007
[5] Wang C L, Zhang J L, Zhao M L, Liu J, Su W B, Yin N, Mei L M 2009 Chin. Phys. Lett. 26 107301
[6] Li P C, Yang H S, Li Z Q, Chai Y S, Cao L Z 2002 Chin. Phys. B 11 282
[7] Shang J, Zhang H, Li Y, Cao M G, Zhang P X 2010 Chin. Phys. B 19 107203
[8] Rossignol C, Ralph J M, Bae J M, Vaughey J T 2004 Solid State Ionics 175 59
[9] Salker A V, Choi N J, Kwak J H, Joo B S, Lee D D 2005 Sensors Actuators B 106 461
[10] Mehta A, Berliner R, Smith R W 1997 J. Solid State Chem. 130 192
[11] Liu Y, Qin X Y 2006 J. Phys. Chem. Solids 67 1893
[12] Androulakis J, Migiakis P, Giapintzakis J 2004 Appl. Phys. Lett. 84 1099
[13] Thornton G, Morrison F C, Partington S, Tofield B C, Williams D E 1988 J. Phys. C: Solid State Phys. 21 2871
[14] Se\v{n}arís-Rodríguez M A, Goodenough J B 1995 J. Solid State Chem. 118 323
[15] Chang H, Chen C L, Garrett T, Chen X H, Xiang X D, Chu C W, Zhang Q Y, Dong C 2002 Appl. Phys. Lett. 80 4333
[16] Demazeau G, Pouchard M, Hagenmuller P 1974 J. Solid State Chem. 9 202
[17] Michel C R, Gago A S, Guzman-Colin H, Lopez-Mena E R, Lardizabal D, Buassi-Monroy O S 2004 Mater. Res. Bull. 39 2295
[18] Goldsmit V M, Geochemische Vertailungsgesetze der E, Skrifter N V A 1926 Oslo I. Mat. Naturr. 2 7
[19] Kn\’{I}\v{z}ek K, Jirák Z, Hejtmázek J, Veverka M, Mary\v{s}ko M, Maris G, Palstra T T M 2005 Eur. Phys. J. B 47 213
[20] Moon J W, Masuda Y, Seo W S, Koumoto K 2001 Mater. Lett. 48 225
[21] Kushida K, Kuriyama K 2001 Proceedings of the 25th International Conference on Physics of Semiconductors (Berlin: Spinger) p168
[22] Okutan M, Bakan H I, Korkmaz K, Yakuphanoglu F 2005 Physica B 355 176
-
[1] Liu Y, Qin X Y, Wang Y F, Xin H X, Zhang J, Li H J 2007 J. Appl. Phys. 101 083709
[2] Androulakis J, Migiakis P, Giapintzakis J 2004 Appl. Phys. Lett. 84 1099
[3] Berggold K, Kriener M, Zobel C, Reichl A, Reuther M, Muller R, Freimth A, Lotenz T 2005 Phys. Rev. B 72 155
[4] Moon J W, Seo W S, Okabe H, Okawa T, Oumotok K 2000 J. Matter Chem. 10 2007
[5] Wang C L, Zhang J L, Zhao M L, Liu J, Su W B, Yin N, Mei L M 2009 Chin. Phys. Lett. 26 107301
[6] Li P C, Yang H S, Li Z Q, Chai Y S, Cao L Z 2002 Chin. Phys. B 11 282
[7] Shang J, Zhang H, Li Y, Cao M G, Zhang P X 2010 Chin. Phys. B 19 107203
[8] Rossignol C, Ralph J M, Bae J M, Vaughey J T 2004 Solid State Ionics 175 59
[9] Salker A V, Choi N J, Kwak J H, Joo B S, Lee D D 2005 Sensors Actuators B 106 461
[10] Mehta A, Berliner R, Smith R W 1997 J. Solid State Chem. 130 192
[11] Liu Y, Qin X Y 2006 J. Phys. Chem. Solids 67 1893
[12] Androulakis J, Migiakis P, Giapintzakis J 2004 Appl. Phys. Lett. 84 1099
[13] Thornton G, Morrison F C, Partington S, Tofield B C, Williams D E 1988 J. Phys. C: Solid State Phys. 21 2871
[14] Se\v{n}arís-Rodríguez M A, Goodenough J B 1995 J. Solid State Chem. 118 323
[15] Chang H, Chen C L, Garrett T, Chen X H, Xiang X D, Chu C W, Zhang Q Y, Dong C 2002 Appl. Phys. Lett. 80 4333
[16] Demazeau G, Pouchard M, Hagenmuller P 1974 J. Solid State Chem. 9 202
[17] Michel C R, Gago A S, Guzman-Colin H, Lopez-Mena E R, Lardizabal D, Buassi-Monroy O S 2004 Mater. Res. Bull. 39 2295
[18] Goldsmit V M, Geochemische Vertailungsgesetze der E, Skrifter N V A 1926 Oslo I. Mat. Naturr. 2 7
[19] Kn\’{I}\v{z}ek K, Jirák Z, Hejtmázek J, Veverka M, Mary\v{s}ko M, Maris G, Palstra T T M 2005 Eur. Phys. J. B 47 213
[20] Moon J W, Masuda Y, Seo W S, Koumoto K 2001 Mater. Lett. 48 225
[21] Kushida K, Kuriyama K 2001 Proceedings of the 25th International Conference on Physics of Semiconductors (Berlin: Spinger) p168
[22] Okutan M, Bakan H I, Korkmaz K, Yakuphanoglu F 2005 Physica B 355 176
计量
- 文章访问数: 7017
- PDF下载量: 590
- 被引次数: 0