-
利用电化学沉积法在阳极氧化铝模板中制备了高长径比 (20—100) 金纳米线阵列,并用扫描俄歇电子显微镜对其结构进行了表征. 紫外可见吸收光谱显示金纳米线的表面等离子共振包含横向吸收峰(transverse mode)和纵向吸收峰(longitudinal mode), 具有很强的各向异性特征. 纵向吸收峰的强度与入射光的偏振方向和入射角度有关, 随着长径比的增加纵向吸收峰位置向高能方向移动. 将纳米线之间的表面等离子体能量耦合与分子H聚合体的吸收光谱行为做了比较, 认为相邻纳米线间的多重耦合使纵向吸收峰出现蓝移. 利用有限元分析法模拟了电场在纳米线阵列和单根纳米线表面的不同分布.Au nanowire arrays with high aspect ratios are prepared in anode aluminum oxide templates by electrochemical deposition. The obtained structures are investigated by scanning Auger microscopy. Surface plasmon resonances of Au nanowire arrays induce a transverse mode (T mode) and a longitudinal mode (L mode) in the optical absorption, which indicates the strong anisotropy of the Au nanowires. The L mode intensity is related to the angle and polarization of the incident light. The L mode position shows a shift with the increase of aspect ratio of the nanowires. The plasmon coupling between Au nanowires is compared with the H-aggregation of organic chromophores. The blue shift of the L mode in the arrays compared with a single nanowire is induced by multi-coupling of the electromagnetic field between neighbouring nanowires. A finite element method is used to simulate the electric field distributions of a single Au nanowire and an array of plasmonically coupled wires.
[1] Mie G 1908 Ann. Phys. 25 377
[2] Link S, El-Sayed M A 2000 Int. Rev. Phys. Chem. 19 409
[3] Kelly L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668
[4] Liz-Marzan L M 2006 Langmuir 22 32
[5] El-Sayed M A 2004 Acc. Chem. Res. 37 326
[6] Jain P K, Huang X, El-Sayed I H, El-Sayed M A 2008 Acc. Chem. Res. 41 1578
[7] Mulvaney P 1996 Langmuir 12 788
[8] Lissberger P H, Nelson R G 1974 Thin Solid Films 21 159
[9] Link S, El-Sayed M A 1999 J. Phys. Chem. B 103 8410
[10] Ono A, Kato J, Kawata S 2005 Phys. Rev. Lett. 95 267407
[11] Podolskiy V A, Sarychev A K, Narimanov E E, Shalaev V M 2005 J. Opt. A: Pure Appl. Opt. 7 S32
[12] Jain P K, El-Sayed M A 2010 Chem. Phys. Lett. 487 153
[13] Kiel M, Mitzscherling S, Leitenberger W, Santer S, Tiersch B, Sievers T K, Möhwald H, Bargheer M 2010 Langmuir 26 18499
[14] Huang X I, Neretina S, El-Sayed M A 2009 Adv. Mater. 21 4880
[15] Valizadeh S, Abid M, Hernandez-Ramimathrez F, Rodriguez A R, Hjort K, Schweitz J A 2006 Nanotechnology 17 1134
[16] Crouse D, Lo Y H, Miller A E, Crouse M 2000 Appl. Phys. Lett. 76 49
[17] Liu L F, Zhou W Y, Xie S S, Albrecht O, Nielsch K 2008 Chem. Phys. Lett. 466 165
[18] Carignan L P, Lacroix C, Ouimet A, CiureanuM, Yelon A, Ménard D 2007 J. Appl. Phys. 102 023905
[19] Klammer J, Bachmann J, Töllner W, Bourgault D, Cagnon L, Gösele U, Nielsch K 2010 Phys. Status Solidi B 247 1384
[20] Kim J, Hwang B S, Jeong J H, Kwon M H 2005 J. Korean Phys. Soc. 47 204
[21] Jain P K, Eustis S, El-Sayed M A 2006 J. Phys. Chem. B 110 18243
[22] Xiao J J, Huang J P, Yu K W 2005 Phys. Rev. B 71 045404
[23] Huang J P, Yu K W, Gu G Q 2002 Phys. Rev. E 65 021401
[24] Gluodenis M, Foss Jr C A 2002 J. Phys. Chem. B 106 9484
[25] Kreibig U, Vollmer M 1995 Optical Properties of Metal Clusters Series in Materials Science 25 (New York: Springer)
[26] Link S, Mohamed M B, El-Sayed M A 1999 J. Phys. Chem. B 103 3073
[27] Packard B Z, Toptygin D D, Komoriya A, Brand L 1998 J. Phys. Chem. B 102 752
[28] Kasha M 1963 Radiat. Res. 20 55
[29] Kasha M, Rawls H R, El-Bayoumi M A 1965 Pure Appl. Chem. 11 371
[30] Wurtz G A, Dickson W, O'Connor D, Atkinson R, Hendren W, Evans P, Pollard R, Zayats A V 2008 Opt. Express 16 7460
-
[1] Mie G 1908 Ann. Phys. 25 377
[2] Link S, El-Sayed M A 2000 Int. Rev. Phys. Chem. 19 409
[3] Kelly L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668
[4] Liz-Marzan L M 2006 Langmuir 22 32
[5] El-Sayed M A 2004 Acc. Chem. Res. 37 326
[6] Jain P K, Huang X, El-Sayed I H, El-Sayed M A 2008 Acc. Chem. Res. 41 1578
[7] Mulvaney P 1996 Langmuir 12 788
[8] Lissberger P H, Nelson R G 1974 Thin Solid Films 21 159
[9] Link S, El-Sayed M A 1999 J. Phys. Chem. B 103 8410
[10] Ono A, Kato J, Kawata S 2005 Phys. Rev. Lett. 95 267407
[11] Podolskiy V A, Sarychev A K, Narimanov E E, Shalaev V M 2005 J. Opt. A: Pure Appl. Opt. 7 S32
[12] Jain P K, El-Sayed M A 2010 Chem. Phys. Lett. 487 153
[13] Kiel M, Mitzscherling S, Leitenberger W, Santer S, Tiersch B, Sievers T K, Möhwald H, Bargheer M 2010 Langmuir 26 18499
[14] Huang X I, Neretina S, El-Sayed M A 2009 Adv. Mater. 21 4880
[15] Valizadeh S, Abid M, Hernandez-Ramimathrez F, Rodriguez A R, Hjort K, Schweitz J A 2006 Nanotechnology 17 1134
[16] Crouse D, Lo Y H, Miller A E, Crouse M 2000 Appl. Phys. Lett. 76 49
[17] Liu L F, Zhou W Y, Xie S S, Albrecht O, Nielsch K 2008 Chem. Phys. Lett. 466 165
[18] Carignan L P, Lacroix C, Ouimet A, CiureanuM, Yelon A, Ménard D 2007 J. Appl. Phys. 102 023905
[19] Klammer J, Bachmann J, Töllner W, Bourgault D, Cagnon L, Gösele U, Nielsch K 2010 Phys. Status Solidi B 247 1384
[20] Kim J, Hwang B S, Jeong J H, Kwon M H 2005 J. Korean Phys. Soc. 47 204
[21] Jain P K, Eustis S, El-Sayed M A 2006 J. Phys. Chem. B 110 18243
[22] Xiao J J, Huang J P, Yu K W 2005 Phys. Rev. B 71 045404
[23] Huang J P, Yu K W, Gu G Q 2002 Phys. Rev. E 65 021401
[24] Gluodenis M, Foss Jr C A 2002 J. Phys. Chem. B 106 9484
[25] Kreibig U, Vollmer M 1995 Optical Properties of Metal Clusters Series in Materials Science 25 (New York: Springer)
[26] Link S, Mohamed M B, El-Sayed M A 1999 J. Phys. Chem. B 103 3073
[27] Packard B Z, Toptygin D D, Komoriya A, Brand L 1998 J. Phys. Chem. B 102 752
[28] Kasha M 1963 Radiat. Res. 20 55
[29] Kasha M, Rawls H R, El-Bayoumi M A 1965 Pure Appl. Chem. 11 371
[30] Wurtz G A, Dickson W, O'Connor D, Atkinson R, Hendren W, Evans P, Pollard R, Zayats A V 2008 Opt. Express 16 7460
计量
- 文章访问数: 11353
- PDF下载量: 797
- 被引次数: 0