搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于表面等离子体耦合的高密度金纳米线阵列

闫红丹 Peter Lemmens Johannes Ahrens Martin Bröring Sven Burger Winfried Daum Gerhard Lilienkamp Sandra Korte Aidin Lak Meinhard Schilling

引用本文:
Citation:

基于表面等离子体耦合的高密度金纳米线阵列

闫红丹, Peter Lemmens, Johannes Ahrens, Martin Bröring, Sven Burger, Winfried Daum, Gerhard Lilienkamp, Sandra Korte, Aidin Lak, Meinhard Schilling

High-density array of Au nanowires coupled by plasmon modes

Yan Hong-Dan, Peter Lemmens, Johannes Ahrens, Martin Bröring, Sven Burger, Winfried Daum, Gerhard Lilienkamp, Sandra Korte, Aidin Lak, Meinhard Schilling
PDF
导出引用
  • 利用电化学沉积法在阳极氧化铝模板中制备了高长径比 (20—100) 金纳米线阵列,并用扫描俄歇电子显微镜对其结构进行了表征. 紫外可见吸收光谱显示金纳米线的表面等离子共振包含横向吸收峰(transverse mode)和纵向吸收峰(longitudinal mode), 具有很强的各向异性特征. 纵向吸收峰的强度与入射光的偏振方向和入射角度有关, 随着长径比的增加纵向吸收峰位置向高能方向移动. 将纳米线之间的表面等离子体能量耦合与分子H聚合体的吸收光谱行为做了比较, 认为相邻纳米线间的多重耦合使纵向吸收峰出现蓝移. 利用有限元分析法模拟了电场在纳米线阵列和单根纳米线表面的不同分布.
    Au nanowire arrays with high aspect ratios are prepared in anode aluminum oxide templates by electrochemical deposition. The obtained structures are investigated by scanning Auger microscopy. Surface plasmon resonances of Au nanowire arrays induce a transverse mode (T mode) and a longitudinal mode (L mode) in the optical absorption, which indicates the strong anisotropy of the Au nanowires. The L mode intensity is related to the angle and polarization of the incident light. The L mode position shows a shift with the increase of aspect ratio of the nanowires. The plasmon coupling between Au nanowires is compared with the H-aggregation of organic chromophores. The blue shift of the L mode in the arrays compared with a single nanowire is induced by multi-coupling of the electromagnetic field between neighbouring nanowires. A finite element method is used to simulate the electric field distributions of a single Au nanowire and an array of plasmonically coupled wires.
    • 基金项目: International Graduate School of Metrology (B-IGSM) and the NTH-School Contacts in Nanosystems 支持的课题.
    • Funds: Project supported by the International Graduate School of Metrology (B-IGSM) and the NTH-School Contacts in Nanosystems.
    [1]

    Mie G 1908 Ann. Phys. 25 377

    [2]

    Link S, El-Sayed M A 2000 Int. Rev. Phys. Chem. 19 409

    [3]

    Kelly L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668

    [4]

    Liz-Marzan L M 2006 Langmuir 22 32

    [5]

    El-Sayed M A 2004 Acc. Chem. Res. 37 326

    [6]

    Jain P K, Huang X, El-Sayed I H, El-Sayed M A 2008 Acc. Chem. Res. 41 1578

    [7]

    Mulvaney P 1996 Langmuir 12 788

    [8]

    Lissberger P H, Nelson R G 1974 Thin Solid Films 21 159

    [9]

    Link S, El-Sayed M A 1999 J. Phys. Chem. B 103 8410

    [10]

    Ono A, Kato J, Kawata S 2005 Phys. Rev. Lett. 95 267407

    [11]

    Podolskiy V A, Sarychev A K, Narimanov E E, Shalaev V M 2005 J. Opt. A: Pure Appl. Opt. 7 S32

    [12]

    Jain P K, El-Sayed M A 2010 Chem. Phys. Lett. 487 153

    [13]

    Kiel M, Mitzscherling S, Leitenberger W, Santer S, Tiersch B, Sievers T K, Möhwald H, Bargheer M 2010 Langmuir 26 18499

    [14]

    Huang X I, Neretina S, El-Sayed M A 2009 Adv. Mater. 21 4880

    [15]

    Valizadeh S, Abid M, Hernandez-Ramimathrez F, Rodriguez A R, Hjort K, Schweitz J A 2006 Nanotechnology 17 1134

    [16]

    Crouse D, Lo Y H, Miller A E, Crouse M 2000 Appl. Phys. Lett. 76 49

    [17]

    Liu L F, Zhou W Y, Xie S S, Albrecht O, Nielsch K 2008 Chem. Phys. Lett. 466 165

    [18]

    Carignan L P, Lacroix C, Ouimet A, CiureanuM, Yelon A, Ménard D 2007 J. Appl. Phys. 102 023905

    [19]

    Klammer J, Bachmann J, Töllner W, Bourgault D, Cagnon L, Gösele U, Nielsch K 2010 Phys. Status Solidi B 247 1384

    [20]

    Kim J, Hwang B S, Jeong J H, Kwon M H 2005 J. Korean Phys. Soc. 47 204

    [21]

    Jain P K, Eustis S, El-Sayed M A 2006 J. Phys. Chem. B 110 18243

    [22]

    Xiao J J, Huang J P, Yu K W 2005 Phys. Rev. B 71 045404

    [23]

    Huang J P, Yu K W, Gu G Q 2002 Phys. Rev. E 65 021401

    [24]

    Gluodenis M, Foss Jr C A 2002 J. Phys. Chem. B 106 9484

    [25]

    Kreibig U, Vollmer M 1995 Optical Properties of Metal Clusters Series in Materials Science 25 (New York: Springer)

    [26]

    Link S, Mohamed M B, El-Sayed M A 1999 J. Phys. Chem. B 103 3073

    [27]

    Packard B Z, Toptygin D D, Komoriya A, Brand L 1998 J. Phys. Chem. B 102 752

    [28]

    Kasha M 1963 Radiat. Res. 20 55

    [29]

    Kasha M, Rawls H R, El-Bayoumi M A 1965 Pure Appl. Chem. 11 371

    [30]

    Wurtz G A, Dickson W, O'Connor D, Atkinson R, Hendren W, Evans P, Pollard R, Zayats A V 2008 Opt. Express 16 7460

  • [1]

    Mie G 1908 Ann. Phys. 25 377

    [2]

    Link S, El-Sayed M A 2000 Int. Rev. Phys. Chem. 19 409

    [3]

    Kelly L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668

    [4]

    Liz-Marzan L M 2006 Langmuir 22 32

    [5]

    El-Sayed M A 2004 Acc. Chem. Res. 37 326

    [6]

    Jain P K, Huang X, El-Sayed I H, El-Sayed M A 2008 Acc. Chem. Res. 41 1578

    [7]

    Mulvaney P 1996 Langmuir 12 788

    [8]

    Lissberger P H, Nelson R G 1974 Thin Solid Films 21 159

    [9]

    Link S, El-Sayed M A 1999 J. Phys. Chem. B 103 8410

    [10]

    Ono A, Kato J, Kawata S 2005 Phys. Rev. Lett. 95 267407

    [11]

    Podolskiy V A, Sarychev A K, Narimanov E E, Shalaev V M 2005 J. Opt. A: Pure Appl. Opt. 7 S32

    [12]

    Jain P K, El-Sayed M A 2010 Chem. Phys. Lett. 487 153

    [13]

    Kiel M, Mitzscherling S, Leitenberger W, Santer S, Tiersch B, Sievers T K, Möhwald H, Bargheer M 2010 Langmuir 26 18499

    [14]

    Huang X I, Neretina S, El-Sayed M A 2009 Adv. Mater. 21 4880

    [15]

    Valizadeh S, Abid M, Hernandez-Ramimathrez F, Rodriguez A R, Hjort K, Schweitz J A 2006 Nanotechnology 17 1134

    [16]

    Crouse D, Lo Y H, Miller A E, Crouse M 2000 Appl. Phys. Lett. 76 49

    [17]

    Liu L F, Zhou W Y, Xie S S, Albrecht O, Nielsch K 2008 Chem. Phys. Lett. 466 165

    [18]

    Carignan L P, Lacroix C, Ouimet A, CiureanuM, Yelon A, Ménard D 2007 J. Appl. Phys. 102 023905

    [19]

    Klammer J, Bachmann J, Töllner W, Bourgault D, Cagnon L, Gösele U, Nielsch K 2010 Phys. Status Solidi B 247 1384

    [20]

    Kim J, Hwang B S, Jeong J H, Kwon M H 2005 J. Korean Phys. Soc. 47 204

    [21]

    Jain P K, Eustis S, El-Sayed M A 2006 J. Phys. Chem. B 110 18243

    [22]

    Xiao J J, Huang J P, Yu K W 2005 Phys. Rev. B 71 045404

    [23]

    Huang J P, Yu K W, Gu G Q 2002 Phys. Rev. E 65 021401

    [24]

    Gluodenis M, Foss Jr C A 2002 J. Phys. Chem. B 106 9484

    [25]

    Kreibig U, Vollmer M 1995 Optical Properties of Metal Clusters Series in Materials Science 25 (New York: Springer)

    [26]

    Link S, Mohamed M B, El-Sayed M A 1999 J. Phys. Chem. B 103 3073

    [27]

    Packard B Z, Toptygin D D, Komoriya A, Brand L 1998 J. Phys. Chem. B 102 752

    [28]

    Kasha M 1963 Radiat. Res. 20 55

    [29]

    Kasha M, Rawls H R, El-Bayoumi M A 1965 Pure Appl. Chem. 11 371

    [30]

    Wurtz G A, Dickson W, O'Connor D, Atkinson R, Hendren W, Evans P, Pollard R, Zayats A V 2008 Opt. Express 16 7460

  • [1] 沈艳丽, 史冰融, 吕浩, 张帅一, 王霞. 基于石墨烯的Au纳米颗粒增强染料随机激光.  , 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [2] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究.  , 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [3] 肖士妍, 贾大功, 聂安然, 余辉, 吉喆, 张红霞, 刘铁根. 开放式多通道多芯少模光纤表面等离子体共振生物传感器.  , 2020, 69(13): 137802. doi: 10.7498/aps.69.20200353
    [4] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究.  , 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [5] 施伟华, 尤承杰, 吴静. 基于表面等离子体共振和定向耦合的D形光子晶体光纤折射率和温度传感器.  , 2015, 64(22): 224221. doi: 10.7498/aps.64.224221
    [6] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究.  , 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [7] 李思祺, 齐卫宏. Ag-Au二元纳米微粒吸收谱的计算.  , 2014, 63(11): 117802. doi: 10.7498/aps.63.117802
    [8] 孙松松, 王红艳. 内嵌圆饼空心方形银纳米结构的光学性质.  , 2014, 63(10): 107803. doi: 10.7498/aps.63.107803
    [9] 荆庆丽, 杜春光, 高健存. 表面等离子共振现象的新应用——微弱磁场的测量.  , 2013, 62(3): 037302. doi: 10.7498/aps.62.037302
    [10] 李娆, 朱亚彬, 狄月, 刘冬雪, 李冰, 钟韦. 有序金纳米颗粒阵列的制备及光吸收特性研究.  , 2013, 62(19): 198101. doi: 10.7498/aps.62.198101
    [11] 李国龙, 何力军, 李进, 李学生, 梁森, 高忙忙, 袁海雯. 纳米银增强聚合物太阳能电池光吸收的研究.  , 2013, 62(19): 197202. doi: 10.7498/aps.62.197202
    [12] 张喆, 柳倩, 祁志美. 基于金银合金薄膜的近红外表面等离子体共振传感器研究.  , 2013, 62(6): 060703. doi: 10.7498/aps.62.060703
    [13] 冯李航, 曾捷, 梁大开, 张为公. 契形结构光纤表面等离子体共振传感器研究.  , 2013, 62(12): 124207. doi: 10.7498/aps.62.124207
    [14] 邹志宇, 刘晓芳, 曾敏, 杨白, 于荣海, 姜鹤, 唐瑞鹤, 吴章奔. 电场辅助溶解法实现玻璃表面金纳米粒子的形貌控制.  , 2012, 61(10): 104208. doi: 10.7498/aps.61.104208
    [15] 钟明亮, 李山, 熊祖洪, 张中月. 十字形银纳米结构的表面等离子体光子学性质.  , 2012, 61(2): 027803. doi: 10.7498/aps.61.027803
    [16] 邱东江, 范文志, 翁圣, 吴惠桢, 王俊. 以表面等离子体为媒介的ZnO薄膜发光增强特性研究.  , 2011, 60(8): 087301. doi: 10.7498/aps.60.087301
    [17] 郝鹏, 吴一辉, 张平. 纳米金表面修饰与表面等离子体共振传感器的相互作用研究.  , 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
    [18] 龙拥兵, 张剑, 汪国平. 基于表面等离子体激元共振的飞秒抽运探测技术研究.  , 2009, 58(11): 7722-7726. doi: 10.7498/aps.58.7722
    [19] 朱宝华, 王芳芳, 张 琨, 马国宏, 顾玉宗, 郭立俊, 钱士雄. Au:TiO2和Au:Al2O3纳米颗粒复合膜的线性和非线性光学特性.  , 2008, 57(5): 3085-3092. doi: 10.7498/aps.57.3085
    [20] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻.  , 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
计量
  • 文章访问数:  11353
  • PDF下载量:  797
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-21
  • 修回日期:  2012-06-27
  • 刊出日期:  2012-12-05

/

返回文章
返回
Baidu
map