搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超导线的表面区域处理提高其磁场下的输运能力

郭志超 索红莉

引用本文:
Citation:

超导线的表面区域处理提高其磁场下的输运能力

郭志超, 索红莉

The enhancement of current in superconductor wires by modifying and changing the surface region microstructure

Guo Zhi-Chao, Suo Hong-Li
PDF
导出引用
  • 对超导体在外磁场中的特性进行了归纳, 外磁场在超导体中有磁场穿透深度限制,超导体表面有超导壁垒效应和表面钉扎作用, 造成了外磁场在超导线表层密度最大而芯部没有磁通穿过. 表面钉扎和壁垒效应存在的竞争主要集中在表面刺入超导体的柱形空穴. 为了提高超导线在外电场中的输运能力, 在制备上常用提高钉扎性能,而这也有阻碍电流的作用,对超导线芯部区域没有提高钉扎作用的必要, 反而因为它有害于电流传输.根据这些理论尝试设计出多层结构的超导线, 内芯是致密的净超导体晶体结构,外面是与磁场穿透深度厚度相同的一层掺杂、 取代等作用提高钉扎性能的外场渗透层,在超导材料表面与包套材料之间是纳米修饰或者其他手段提高表面钉扎能力的连接层,减少连接层的垂直超导线的柱形纳米空穴可提高壁垒效应. 这种结构因为减少了常规制备中不考虑内部没有磁通而仍然有钉扎处理材料对载流子的散射作用, 这种结构使超导线的输运能力得到了一定提高.
    The electromagnetic characteristics of superconductor are briefly analyzed and described, when a magnetic field is applied to the superconductor, flux lines penetrate it from the surface. The flux lines are pinned by pinning centers on the surface of the superconductor, and cannot penetrate deeply from the surface and the density of the flux lines will be higher near the surface and lower in the inner region, with the participation of surface barrier effect and Meissner effect, which indicates the enhancement of pining in the core of the superconducting wire is useless and blocks the transport current. Based on this knowledge, the new multilayer structure wire is design, and the core of the wire is the high-density superconductor crystal covered by doping or changing microstructure layer with thickness as the penetration depth, outer part of the superconducting region is modified, by nanoparticle surface decorating, electron and heavy ion irradiation and extension to surface. Furthermore the Columnar defects, located near the surface, which suppress the surface barrier but create gigantic surface pinning, and the other pining centers have not this property. Then the superconducting region is wrapt by the normal metal.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2006CB601005)、 国家高技术研究发展计划(批准号: 2009AA032401)、 国家自然科学基金(批准号: 50771003, 50802004) 和北京市自然科学基金(批准号: 2092006)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2006CB601005), the National High Technology Research and Development Program of China (Grant No. 2009AA032401), the National Natural Science Foundation of China (Grant Nos. 50771003, 50802004), and Beijing Municipal Natural Science Foundation, China (Grant No. 2092006).
    [1]

    Ford P J, Saunders G A 2004 The Rise of the Superconductors (Boca Raton: CRC Press) p10

    [2]

    Government U S 2011 High Temperature Superconductivity in Perspective (Washington, DC: Congress of the U.S.) p20

    [3]

    Rogalla H, Kes P H 2011 100 Years of Superconductivity (Boca Raton:CRC Press/Taylor & Francis Group) p6

    [4]

    Li W X, Li Y, Chen R H 2008 Phys. Rev. B 77 094517

    [5]

    Matsushita T 2007 Flux Pinning in Superconductors (Berlin: Springer-Verlag ) p96

    [6]

    Shantsev D V, Galperin Y M 1999 Phys. Rev. B 60 13112

    [7]

    Johansen T H 1999 Phys. Rev. B 60 9690

    [8]

    Clem J R 1994 Phys. Rev. B 50 9355

    [9]

    Jung S G, Seong W K 2012 J. Appl. Phys. 111 053906

    [10]

    Johansson J, Cedergren K 2009 Phys. Rev. B 79 214513

    [11]

    Pogosov W V 2010 Phys. Rev. B 81 184517

    [12]

    Iniotakis C, Dahm T 2008 Phys. Rev. Lett. 100 037002

    [13]

    Zhang L, Qiao Q, Xu X B 2006 Physica C 445-448 236

    [14]

    Vodolazov D Y, Peeters F M 2005 Phys. Rev. B 72 172508

    [15]

    Koshelev A E, Vinokur V M 2001 Phys. Rev. B 64 134518

    [16]

    Dorosinskii L, Bocuk H, Topal U 2001 Supercond. Sci. Technol. 14 839

    [17]

    Gupta A, Narlikar A V 2009 Supercond. Sci. Technol. 22 125029

    [18]

    Ye Z X, Li Q, Hu Y 2005 Appl. Phys. Lett. 87 122502

    [19]

    Aytug T, Paranthaman M, Leonard K J 2008 J. Appl. Phys. 104 043906

    [20]

    Haberkorn N, Maiorov B, Usov I O 2012 Phys. Rev. B 85 014522

    [21]

    Stuart E B, Eduardo F, Steven A 2005 Phys. Rev. B 71 224512

    [22]

    de Andrade M C, Dilley N R, Ruess F J 1994 Phys. Rev. B 57 708

  • [1]

    Ford P J, Saunders G A 2004 The Rise of the Superconductors (Boca Raton: CRC Press) p10

    [2]

    Government U S 2011 High Temperature Superconductivity in Perspective (Washington, DC: Congress of the U.S.) p20

    [3]

    Rogalla H, Kes P H 2011 100 Years of Superconductivity (Boca Raton:CRC Press/Taylor & Francis Group) p6

    [4]

    Li W X, Li Y, Chen R H 2008 Phys. Rev. B 77 094517

    [5]

    Matsushita T 2007 Flux Pinning in Superconductors (Berlin: Springer-Verlag ) p96

    [6]

    Shantsev D V, Galperin Y M 1999 Phys. Rev. B 60 13112

    [7]

    Johansen T H 1999 Phys. Rev. B 60 9690

    [8]

    Clem J R 1994 Phys. Rev. B 50 9355

    [9]

    Jung S G, Seong W K 2012 J. Appl. Phys. 111 053906

    [10]

    Johansson J, Cedergren K 2009 Phys. Rev. B 79 214513

    [11]

    Pogosov W V 2010 Phys. Rev. B 81 184517

    [12]

    Iniotakis C, Dahm T 2008 Phys. Rev. Lett. 100 037002

    [13]

    Zhang L, Qiao Q, Xu X B 2006 Physica C 445-448 236

    [14]

    Vodolazov D Y, Peeters F M 2005 Phys. Rev. B 72 172508

    [15]

    Koshelev A E, Vinokur V M 2001 Phys. Rev. B 64 134518

    [16]

    Dorosinskii L, Bocuk H, Topal U 2001 Supercond. Sci. Technol. 14 839

    [17]

    Gupta A, Narlikar A V 2009 Supercond. Sci. Technol. 22 125029

    [18]

    Ye Z X, Li Q, Hu Y 2005 Appl. Phys. Lett. 87 122502

    [19]

    Aytug T, Paranthaman M, Leonard K J 2008 J. Appl. Phys. 104 043906

    [20]

    Haberkorn N, Maiorov B, Usov I O 2012 Phys. Rev. B 85 014522

    [21]

    Stuart E B, Eduardo F, Steven A 2005 Phys. Rev. B 71 224512

    [22]

    de Andrade M C, Dilley N R, Ruess F J 1994 Phys. Rev. B 57 708

  • [1] 闻海虎. 高温超导体磁通钉扎和磁通动力学研究简介.  , 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [2] 梁超, 张洁, 赵可, 羊新胜, 赵勇. 拓扑超导体FeSexTe1–x单晶超导性能与磁通钉扎.  , 2020, 69(23): 237401. doi: 10.7498/aps.69.20201125
    [3] 张若舟, 秦明阳, 张露, 尤立星, 董超, 沙鹏, 袁洁, 金魁. 超导薄膜磁场穿透深度的双线圈互感测量.  , 2020, 69(4): 047401. doi: 10.7498/aps.69.20191758
    [4] 杨卓群, 吴亚波, 鲁军旺, 张成园, 张雪. Lifshitz时空s波超导模型的关联长度和穿透深度.  , 2016, 65(4): 040401. doi: 10.7498/aps.65.040401
    [5] 王银博, 薛驰, 冯庆荣. 钛离子辐照对MgB2超导薄膜的载流能力和磁通钉扎能力的影响.  , 2012, 61(19): 197401. doi: 10.7498/aps.61.197401
    [6] 孙辉辉, 杨烨, 王磊, Cheng C. H., 冯勇, 赵勇. 柠檬酸掺杂的MgB2超导体钉扎机理的研究.  , 2010, 59(5): 3488-3493. doi: 10.7498/aps.59.3488
    [7] 陈昌兆, 蔡传兵, 刘志勇, 应利良, 高 波, 刘金磊, 鲁玉明. NdBa2Cu3O7-δ/YBa2Cu3O7-δ多层膜体系的外延结构和磁通钉扎的研究.  , 2008, 57(7): 4371-4378. doi: 10.7498/aps.57.4371
    [8] 何国良, 贺延文, 赵志刚, 刘 楣. 无序超导体磁通运动的两次退钉扎效应和重新进入超导相.  , 2006, 55(2): 839-843. doi: 10.7498/aps.55.839
    [9] 谢 尊, 安 忠, 李有成, 刘 英. 钉扎效应对聚噻吩中双空穴极化子附近局域振动模的影响.  , 2005, 54(8): 3922-3926. doi: 10.7498/aps.54.3922
    [10] 王瑞峰, 赵士平, 徐凤枝, 陈赓华, 杨乾声. 超导体磁场穿透深度测量中的数据分析问题.  , 2002, 51(4): 889-893. doi: 10.7498/aps.51.889
    [11] 冯 勇, 周 廉, 杨万民, 张翠萍, 汪京荣, 于泽铭, 吴晓祖. PMP法YGdBaCuO超导体的磁通钉扎研究.  , 2000, 49(1): 146-152. doi: 10.7498/aps.49.146
    [12] 刘 峰, 阎守胜. 非理想第二类超导体局域磁弛豫的计算模拟:非均匀钉扎势和表面势垒影响.  , 2000, 49(9): 1829-1837. doi: 10.7498/aps.49.1829
    [13] 胡刚进, 方明虎, 李钟贤, 曾兴斌, 陈南松, 焦正宽, 张其瑞, 张贻瞳, 金新, 姚希贤. YBa2Cu3Oy中氧缺位的磁通钉扎效应.  , 1993, 42(10): 1669-1673. doi: 10.7498/aps.42.1669
    [14] 丁世英, 史可信, 曾朝阳, 余正, 施智祥, 邱里. Tl2Ba2Ca2Cu3Oy超导体磁通钉扎能的分布.  , 1991, 40(6): 985-989. doi: 10.7498/aps.40.985
    [15] 金新, 张贻瞳, 鹿牧, 张长贵, 颜涌, 于杨, 沈剑沧, 姚希贤. (BiPb)-Sr-Ca-Cu-O2223相高Tc超导体磁通钉扎与蠕动.  , 1991, 40(4): 630-633. doi: 10.7498/aps.40.630
    [16] 丁世英, 施智祥, 颜家烈, 余正, 史可信, 童红武, 邱里. Tl2Ba2Ca2Cu3Oy超导体低场钉扎力的性质.  , 1990, 39(12): 1999-2004. doi: 10.7498/aps.39.1999
    [17] 丁世英, 颜家烈, 余正, 童红武, 史可信, 邱里. YBaCuO超导陶瓷的有效钉扎力.  , 1990, 39(6): 157-162. doi: 10.7498/aps.39.157
    [18] 曹忠胜, 崔长庚, 周廉. Nb3Sn超导材料的高场钉扎行为.  , 1987, 36(7): 940-944. doi: 10.7498/aps.36.940
    [19] 陆怀先, 都有为, 王挺祥, 张毓昌. 有机物包裹的Fe3O4颗粒表面自旋钉扎效应研究.  , 1985, 34(1): 121-125. doi: 10.7498/aps.34.121
    [20] 蔡学榆, 尹道乐, 李传义. A-15超导材料的高场钉扎机制.  , 1983, 32(9): 1183-1186. doi: 10.7498/aps.32.1183
计量
  • 文章访问数:  6189
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-12
  • 修回日期:  2012-06-22
  • 刊出日期:  2012-12-05

/

返回文章
返回
Baidu
map