搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直剪颗粒体系声波探测

张祺 李寅阊 刘锐 蒋亦民 厚美瑛

引用本文:
Citation:

直剪颗粒体系声波探测

张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛

Acoustic probing of the granular solid system under direct shear

Zhang Qi, Li Yin-Chang, Liu Rui, Jiang Yi-Min, Hou Mei-Ying
PDF
导出引用
  • 建立了声波监测系统,探测颗粒体系在直剪过程中声速与剪切应力的变化关系. 发现声速在剪切开始后随着剪切应力的增加会迅速减小.而在应力达到屈服点之后, 声速变化逐渐变缓并趋近于一个稳定值.剪切作用对声速变化的影响小于20%, 而非所预测由于剪切带的形成,声波(尤其是横向波)的振动无法通过剪切带而使得探测的飞行速度变为零. 这是由于直剪的应变率甚低于声波的频率,直剪的颗粒体系可被视为局部区域膨胀的准静态的弹塑固体. 结合等效介质理论和颗粒弹性理论对以上结果进行了解释和讨论.
    Acoustic signal is used to study the mechanical properties of dense granular system under direct shear. In the process of direct shearing, it is found that the velocity of the sound wave decreases rapidly with the increase of shear stress. After the yield point of stress, with the increase of strain, the velocity of the propagating wave decreases gradually and attains a constant. The net reduction in velocity is found to be less than 20%, which differs from the fact that acoustic wave (especially the transverse wave) could not propagate through the shear band. This is because the direct shear strain rate is far smaller than the frequency of sound wave, and particles under shear can be regarded as quasi-static elastic-plastic solid. Effective medium theory and granular dlastic theory are employed for explaining these results.
    • 基金项目: 国家自然科学基金(批准号: 11034010) 和地震行业科研经费(批准号: 201208011)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11034010) and Special Fund for Earthquake Research (Grant No. 201208011).
    [1]

    Jaeger H M, Nagel S R, Behringer R P 1996 Rev. Mod. Phys. 68 1259

    [2]

    Travers T, Ammi M, Bideau D, Gervois A 1987 Europhys. Lett. 4 329

    [3]

    Liu C H, Nagel S R, Schecter D A 1995 Science 269 5223

    [4]

    Majmudar T S, Behringer R P 2005 Nature 435 1079

    [5]

    Lasic S, Stepisnik J, Mohoric A 2006 Europhys. Lett. 6 887

    [6]

    Liu C H, Nagel S R 1992 Phys. Rev. Lett. 68 2301

    [7]

    Liu C H, Nagel S R 1993 Phys. Rev. B 48 15646

    [8]

    Liu C H 1994 Phys. Rev. B 50 782

    [9]

    Jia X P, Caroli C, Velicky B 1999 Phys. Rev. Lett. 82 1863

    [10]

    Jia X P 2004 Phys. Rev. Lett. 93 154303

    [11]

    Jia X P, Laurent J, Khidas Y, Langlois V 2010 Chin. Sci. Bull. 54 4327

    [12]

    Tournat V, Gusev V 2009 Phys. Rev. E 80 011306

    [13]

    Inserra C, Tournat V, Gusev V 2008 Appl. Phys. Lett. 92 191916

    [14]

    Bonneau L, Catelin-Jullien T, Andreotti B 2010 Phys. Rev. E 82 011309

    [15]

    Khidas Y, Jia X P In: Nakagawa M, Luding S (editors) 2009 Powders {& Grains} 1145 259

    [16]

    Digby P J 1981 J. Appl. Mech. 48 803

    [17]

    Makse H A, Gland N, Johnson D L, Schwartz L 2004 Phys. Rev. E 70 061302

    [18]

    Velicky B, Caroli C 2002 Phys. Rev. E 65 021307

    [19]

    Johnson D L, Schwartz L M, Elata D, Berryman J G, Hornby B, Norris A N 1998 J. Appl. Mech. 65 380

    [20]

    Khidas Y, Jia X P 2010 Phys. Rev. E 81 021303

    [21]

    Song C M, Wang P, Makse H A 2008 Nature 453 629

    [22]

    Cui L, Sullivan C O 2006 Geotechnique 56 455

    [23]

    Duffy J, Mindlin R D 1957 J. Appl. Mech. 24 585

    [24]

    Bi Z W, Sun Q C, Liu J G, Jin F, Zhang C H 2011 Acta Phys. Sin. 60 034502 (in Chinese) [毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉 2011 60 034502]

    [25]

    Jiang Y M, Liu M 2009 Granular Matter 11 139

    [26]

    Mayer M, Liu M 2010 Phys. Rev. E 82 042301

    [27]

    Jiang Y M, Liu M 2003 Phys. Rev. Lett. 91 144301

    [28]

    Jiang Y M, Liu M 2007 Phys. Rev. Lett. 99 105501

    [29]

    Zhang Q, Hou M Y, Jiang Y M, Liu M 2012 Phys. Rev. E 86 031306

  • [1]

    Jaeger H M, Nagel S R, Behringer R P 1996 Rev. Mod. Phys. 68 1259

    [2]

    Travers T, Ammi M, Bideau D, Gervois A 1987 Europhys. Lett. 4 329

    [3]

    Liu C H, Nagel S R, Schecter D A 1995 Science 269 5223

    [4]

    Majmudar T S, Behringer R P 2005 Nature 435 1079

    [5]

    Lasic S, Stepisnik J, Mohoric A 2006 Europhys. Lett. 6 887

    [6]

    Liu C H, Nagel S R 1992 Phys. Rev. Lett. 68 2301

    [7]

    Liu C H, Nagel S R 1993 Phys. Rev. B 48 15646

    [8]

    Liu C H 1994 Phys. Rev. B 50 782

    [9]

    Jia X P, Caroli C, Velicky B 1999 Phys. Rev. Lett. 82 1863

    [10]

    Jia X P 2004 Phys. Rev. Lett. 93 154303

    [11]

    Jia X P, Laurent J, Khidas Y, Langlois V 2010 Chin. Sci. Bull. 54 4327

    [12]

    Tournat V, Gusev V 2009 Phys. Rev. E 80 011306

    [13]

    Inserra C, Tournat V, Gusev V 2008 Appl. Phys. Lett. 92 191916

    [14]

    Bonneau L, Catelin-Jullien T, Andreotti B 2010 Phys. Rev. E 82 011309

    [15]

    Khidas Y, Jia X P In: Nakagawa M, Luding S (editors) 2009 Powders {& Grains} 1145 259

    [16]

    Digby P J 1981 J. Appl. Mech. 48 803

    [17]

    Makse H A, Gland N, Johnson D L, Schwartz L 2004 Phys. Rev. E 70 061302

    [18]

    Velicky B, Caroli C 2002 Phys. Rev. E 65 021307

    [19]

    Johnson D L, Schwartz L M, Elata D, Berryman J G, Hornby B, Norris A N 1998 J. Appl. Mech. 65 380

    [20]

    Khidas Y, Jia X P 2010 Phys. Rev. E 81 021303

    [21]

    Song C M, Wang P, Makse H A 2008 Nature 453 629

    [22]

    Cui L, Sullivan C O 2006 Geotechnique 56 455

    [23]

    Duffy J, Mindlin R D 1957 J. Appl. Mech. 24 585

    [24]

    Bi Z W, Sun Q C, Liu J G, Jin F, Zhang C H 2011 Acta Phys. Sin. 60 034502 (in Chinese) [毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉 2011 60 034502]

    [25]

    Jiang Y M, Liu M 2009 Granular Matter 11 139

    [26]

    Mayer M, Liu M 2010 Phys. Rev. E 82 042301

    [27]

    Jiang Y M, Liu M 2003 Phys. Rev. Lett. 91 144301

    [28]

    Jiang Y M, Liu M 2007 Phys. Rev. Lett. 99 105501

    [29]

    Zhang Q, Hou M Y, Jiang Y M, Liu M 2012 Phys. Rev. E 86 031306

  • [1] 李雪梅, 俞宇颖, 谭叶, 胡昌明, 张祖根, 蓝强, 傅秋卫, 景海华. Bi在固液混合相区的冲击参数测量及声速软化特性.  , 2018, 67(4): 046401. doi: 10.7498/aps.67.20172166
    [2] 刘晓宇, 张国华, 孙其诚, 赵雪丹, 刘尚. 二维圆盘颗粒体系声学行为的数值研究.  , 2017, 66(23): 234501. doi: 10.7498/aps.66.234501
    [3] 宗谨, 周志刚, 王文广, 张晟, 林平, 石玉仁, 厚美瑛. 颗粒固体应力转向比的光弹法探测.  , 2017, 66(10): 104501. doi: 10.7498/aps.66.104501
    [4] 潘昊, 吴子辉, 胡晓棉. 非对称冲击-卸载实验中纵波声速的特征线分析方法.  , 2016, 65(11): 116201. doi: 10.7498/aps.65.116201
    [5] 张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军. 垂直载荷下颗粒物质的声波探测和非线性响应.  , 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [6] 颜细平, 彭政, 何菲菲, 蒋亦民. 类固态颗粒物质的剪切弹性行为测量.  , 2016, 65(12): 124501. doi: 10.7498/aps.65.124501
    [7] 瞿谱波, 关小伟, 张振荣, 王晟, 李国华, 叶景峰, 胡志云. 激光诱导热光栅光谱测温技术研究.  , 2015, 64(12): 123301. doi: 10.7498/aps.64.123301
    [8] 宋萍, 蔡灵仓, 李欣竹, 陶天炯, 赵信文, 王学军, 方茂林. 低孔隙度疏松锡的高压声速与相变.  , 2015, 64(10): 106401. doi: 10.7498/aps.64.106401
    [9] 陈琼, 王青花, 赵闯, 张祺, 厚美瑛. 玻璃-橡胶混合颗粒的力学响应研究.  , 2015, 64(15): 154502. doi: 10.7498/aps.64.154502
    [10] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭 华. 钒的高压声速测量.  , 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [11] 王勇, 林书玉, 张小丽. 声波在含气泡液体中的线性传播.  , 2013, 62(6): 064304. doi: 10.7498/aps.62.064304
    [12] 张祺, 厚美瑛. 直剪颗粒体系的尺寸效应研究.  , 2012, 61(24): 244504. doi: 10.7498/aps.61.244504
    [13] 张宁超, 刘福生, 彭小娟, 陈源福, 王军国, 张明建, 薛学东. 40—60 GPa冲击加载下蓝宝石发光机理研究.  , 2012, 61(22): 226501. doi: 10.7498/aps.61.226501
    [14] 郑鹤鹏, 蒋亦民, 彭政, 符力平. 颗粒固体弹性势能的声波性质.  , 2012, 61(21): 214502. doi: 10.7498/aps.61.214502
    [15] 王新峰, 熊显潮, 高敏忠. 超声波流量计测量流体声速的实验方法.  , 2011, 60(11): 114303. doi: 10.7498/aps.60.114303
    [16] 宋萍, 王青松, 戴诚达, 蔡灵仓, 张毅, 翁继东. 低孔隙度疏松铝的高压声速与冲击熔化.  , 2011, 60(4): 046201. doi: 10.7498/aps.60.046201
    [17] 毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉. 双轴压缩下颗粒物质剪切带的形成与发展.  , 2011, 60(3): 034502. doi: 10.7498/aps.60.034502
    [18] 朱 明, 王 殊, 王菽韬, 夏东海. 基于混合气体分子复合弛豫模型的一氧化碳浓度检测算法.  , 2008, 57(9): 5749-5755. doi: 10.7498/aps.57.5749
    [19] 卢义刚, 彭健新. 运用液体声学理论研究超临界二氧化碳的声特性.  , 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
    [20] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速.  , 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
计量
  • 文章访问数:  8778
  • PDF下载量:  540
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-05
  • 修回日期:  2012-06-21
  • 刊出日期:  2012-12-05

/

返回文章
返回
Baidu
map