搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于热质理论的广义热弹性动力学模型

王颖泽 宋新南

引用本文:
Citation:

基于热质理论的广义热弹性动力学模型

王颖泽, 宋新南

Dynamic model of generalized thermoelasticity based on thermal mass theory

Wang Ying-Ze, Song Xin-Nan
PDF
导出引用
  • 具有微尺度传热特征的超常传热过程中, 热流矢与温度梯度之间存在延迟效应, 且热流的运动受到空间效应的影响. 基于热质概念的普适导热定律, 结合Clausius不等式和Helmholtz自由能公式, 构建了计及热流矢和温度对时间和空间惯性效应的广义热弹性动力学模型, 推导了各向同性材料超常传热行为的热弹性控制方程组. 通过与已有广义热弹性动力学模型进行对比分析可得, 当热流密度不大的条件下, 热流矢与温度对空间的惯性效应可忽略时, 基于热质概念的广义热弹性模型可分别退化为L-S, G-L和G-N的模型;对于尺度微观、稳态导热条件时, 热流矢与温度对空间的惯性效应不可忽略, 此时导热系数将受到热质运动惯性效应的影响, 利用所建模型可揭示稳态导热时呈现的非傅里叶现象, 并可避免基于已有广义模型得到的导热系数随结构特征尺寸变化的非物理现象.
    A lagging response in time exists between the propagation of heat flux and the establishment of temperature gradient and it is affected by the space effect during the heat conduction with the micro-scale property. Based on the general heat conduction law of thermal mass, the dynamic model of generalized thermoelasticity is established by Clausius inequality and Helmholtz free energy, where the inertia effect on the time and space of heat flux and temperature is involved. The guiding equations are derived and given for the isotropic and homogeneous materials. By comparison with the existing models of generalized thermoelasticity, the guiding equations can reduce to the L-S, G-L and G-N models when the heat flux is not very high, so that the inertia effect on space of heat flux and temperature can be ignored. For micro-scale heat conduction, the heat flux may be very high and the inertial force due to the spatial velocity variation cannot be ignored, the non-Fourier phenomenon will take place even under steady state condition. In such cases, the thermal conductivity is affected by the inertia effect of the space, which can be explained by the model established in the paper. Meanwhile, the physically impossible phenomenon that thermal conductivity changes with structure size induced by existing generalized model can also be eliminated.
    • 基金项目: 国家自然科学基金(批准号: 11102073, 50978125)、江苏省自然科学基金(批准号: BK2008234)和江苏大学高级人才启动基金(批准号: 10JDG055)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11102073, 50978125), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2008234), and the Research Foundation of Advanced Talents of Jiangsu University, China (Grant No. 10JDG055).
    [1]

    Herwig H, Beckert K 2000 Heat and Mass Transfer 36 387

    [2]

    Lord H W, Shulman Y A 1967 J. Mech. Phys. Solids 15 299

    [3]

    Green A E, Lindsay K A 1972 J. Elasticity 2 1

    [4]

    Green A E, Naghdi P M 1993 J. Elasticity 31 189

    [5]

    Zhou L P, Tang D W, Wu B X, Qian H S 2006 Mater. Sci. Eng. A 428 284

    [6]

    Youssef H M 2011 J. Therm. Stresses 34 138

    [7]

    Chandrasekharaiah D S 1998 Appl. Mech. Rev. 51 705

    [8]

    Tian X G, Shen Y P 2012 Advances in Mechanics 42 1 (in Chinese) [田晓耕, 沈亚鹏 2012 力学进展 42 1]

    [9]

    Lepri S, Livi R, Politi A 1997 Phys. Rev. Lett. 78 1896

    [10]

    Narayan O, Ramaswamy S 2002 Phys. Rev. Lett. 89 200601

    [11]

    Guo Z Y, Cao B Y 2008 Acta Phys. Sin. 57 4273 (in Chinese) [过增元, 曹炳阳 2008 57 4273]

    [12]

    Hu R F, Cao B Y 2009 Sci. China E: Tech. Sci. 39 680 (in Chinese) [胡锐峰, 曹炳阳 2009 中国科学E辑-技术科学 39 680]

    [13]

    Guo Z Y, Wu J, Cao B Y 2009 J. Mech. Eng. 45 10 (in Chinese) [过增元, 吴晶, 曹炳阳 2009 机械工程学报 45 10]

    [14]

    Guo Z Y, Cao B Y, Zhu H Y, Zhang Q G 2007 Acta Phys. Sin. 56 3306 (in Chinese) [过增元, 曹炳阳, 朱宏晔, 张清光 2007 56 3306]

    [15]

    Wang H G 1989 Introduction of Thermoealsticity (Beijing: Tsinghua University Press) p39 (in Chinese) [王洪纲 1989 热弹性力学概论 (北京: 清华大学出版社) 第39页]

    [16]

    Dillon O W 1962 J. Mech. Phys. Solids 10 123

    [17]

    Wang Y Z, Zhang X B, Song X N 2012 Acta Mechanica 223 735

  • [1]

    Herwig H, Beckert K 2000 Heat and Mass Transfer 36 387

    [2]

    Lord H W, Shulman Y A 1967 J. Mech. Phys. Solids 15 299

    [3]

    Green A E, Lindsay K A 1972 J. Elasticity 2 1

    [4]

    Green A E, Naghdi P M 1993 J. Elasticity 31 189

    [5]

    Zhou L P, Tang D W, Wu B X, Qian H S 2006 Mater. Sci. Eng. A 428 284

    [6]

    Youssef H M 2011 J. Therm. Stresses 34 138

    [7]

    Chandrasekharaiah D S 1998 Appl. Mech. Rev. 51 705

    [8]

    Tian X G, Shen Y P 2012 Advances in Mechanics 42 1 (in Chinese) [田晓耕, 沈亚鹏 2012 力学进展 42 1]

    [9]

    Lepri S, Livi R, Politi A 1997 Phys. Rev. Lett. 78 1896

    [10]

    Narayan O, Ramaswamy S 2002 Phys. Rev. Lett. 89 200601

    [11]

    Guo Z Y, Cao B Y 2008 Acta Phys. Sin. 57 4273 (in Chinese) [过增元, 曹炳阳 2008 57 4273]

    [12]

    Hu R F, Cao B Y 2009 Sci. China E: Tech. Sci. 39 680 (in Chinese) [胡锐峰, 曹炳阳 2009 中国科学E辑-技术科学 39 680]

    [13]

    Guo Z Y, Wu J, Cao B Y 2009 J. Mech. Eng. 45 10 (in Chinese) [过增元, 吴晶, 曹炳阳 2009 机械工程学报 45 10]

    [14]

    Guo Z Y, Cao B Y, Zhu H Y, Zhang Q G 2007 Acta Phys. Sin. 56 3306 (in Chinese) [过增元, 曹炳阳, 朱宏晔, 张清光 2007 56 3306]

    [15]

    Wang H G 1989 Introduction of Thermoealsticity (Beijing: Tsinghua University Press) p39 (in Chinese) [王洪纲 1989 热弹性力学概论 (北京: 清华大学出版社) 第39页]

    [16]

    Dillon O W 1962 J. Mech. Phys. Solids 10 123

    [17]

    Wang Y Z, Zhang X B, Song X N 2012 Acta Mechanica 223 735

  • [1] 刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛. 基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究.  , 2024, 73(15): 150202. doi: 10.7498/aps.73.20240515
    [2] 罗天麟, 丁亚飞, 韦宝杰, 杜建迎, 沈翔瀛, 朱桂妹, 李保文. 低维微纳尺度体系声子热传导和热调控: 来自芯片散热的非平衡统计物理问题.  , 2023, 72(23): 234401. doi: 10.7498/aps.72.20231546
    [3] 李含灵, 曹炳阳. 微纳尺度体点导热的拓扑优化.  , 2019, 68(20): 200201. doi: 10.7498/aps.68.20190923
    [4] 王颖泽, 宋新南, 刘栋. 热惯性对热弹性行为影响的渐近分析.  , 2013, 62(21): 214601. doi: 10.7498/aps.62.214601
    [5] 鲁公儒, 李新强, 李艳敏, 苏方. 代非普适Z'模型下中性Bs介子混合的研究.  , 2012, 61(24): 241301. doi: 10.7498/aps.61.241301
    [6] 宋柏, 吴晶, 过增元. 基于热质理论的Hamilton原理.  , 2010, 59(10): 7129-7134. doi: 10.7498/aps.59.7129
    [7] 过增元, 曹炳阳. 基于热质运动概念的普适导热定律.  , 2008, 57(7): 4273-4281. doi: 10.7498/aps.57.4273
    [8] 颜克凤, 李小森, 陈朝阳, 李 刚, 唐良广, 樊栓狮. 用分子动力学模拟甲烷水合物热激法分解.  , 2007, 56(8): 4994-5002. doi: 10.7498/aps.56.4994
    [9] 宋爱军, 韩 雷. 热超声键合换能系统动力学特性的非线性检验.  , 2007, 56(7): 3820-3826. doi: 10.7498/aps.56.3820
    [10] 段 鹤, 郑毓峰, 张校刚, 孙言飞, 董有忠. 水热法合成FeS2粉晶及其生长热动力学的研究.  , 2005, 54(4): 1659-1664. doi: 10.7498/aps.54.1659
    [11] 任浩, 顾德炜, 潘正权, 应和平. 自对耦无序分布随机链Potts模型的临界普适性研究.  , 2004, 53(1): 265-271. doi: 10.7498/aps.53.265
    [12] 余 雷, 余建祖, 王永坤. SiNx薄膜热物性参数实验测量与分析研究.  , 2004, 53(2): 401-405. doi: 10.7498/aps.53.401
    [13] 张鹏, 王如竹, 村上正秀. 超流氦浴中的热波传热研究.  , 2002, 51(6): 1350-1354. doi: 10.7498/aps.51.1350
    [14] 邓文基. 推广的EZ模型中的普适性行为.  , 2002, 51(6): 1171-1174. doi: 10.7498/aps.51.1171
    [15] 顾德炜, 应和平, 季达人. 蒙特卡罗短时临界动力学中的普适性研究.  , 2000, 49(2): 344-348. doi: 10.7498/aps.49.344
    [16] 刘家璐, 张廷庆, 李建军, 赵元富. BF2+注入多晶硅栅常规热退火氟迁移特性的二次离子质谱分析.  , 1997, 46(8): 1580-1584. doi: 10.7498/aps.46.1580
    [17] 邢修三. 晶体中热缺陷的产生动力学.  , 1988, 37(4): 694-697. doi: 10.7498/aps.37.694
    [18] 欧发, 蔡永强. 普适性的光学双稳及激光动力学方程和稳定性分析.  , 1988, 37(2): 330-334. doi: 10.7498/aps.37.330
    [19] 王养璞, 金其淑. 热激活磁弹性弛豫的多体普适方法研究.  , 1988, 37(9): 1401-1405. doi: 10.7498/aps.37.1401
    [20] 陈式刚. 关于热的输运过程的动力学理论.  , 1962, 18(6): 305-310. doi: 10.7498/aps.18.305
计量
  • 文章访问数:  8879
  • PDF下载量:  1108
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-16
  • 修回日期:  2012-05-15
  • 刊出日期:  2012-12-05

/

返回文章
返回
Baidu
map