搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米颗粒吸附岩心表面的强疏水特征

王新亮 狄勤丰 张任良 丁伟朋 龚玮 程毅翀

引用本文:
Citation:

纳米颗粒吸附岩心表面的强疏水特征

王新亮, 狄勤丰, 张任良, 丁伟朋, 龚玮, 程毅翀

The strong hydrophobic properties on nanoparticles adsorbed core surfaces

Wang Xin-Liang, Di Qin-Feng, Zhang Ren-Liang, Ding Wei-Peng, Gong Wei, Chen Yi-Chong
PDF
导出引用
  • 通过将疏水的纳米颗粒吸附在岩心微通道壁面, 可以形成具有类荷叶表面的双重微结构表面, 从而在注水开发的过程中在岩心微通道壁面产生水流滑移, 达到降低注水压力、增加注水量的目的. 研究纳米颗粒吸附岩心切片表面的强疏水特征对纳米颗粒吸附法减阻技术具有重要的意义. 本文简要叙述了荷叶、蚊子腿以及水黾腿的超疏水特征; 介绍了制备具有亚微米、纳米双重微结构的强疏水表面的纳米颗粒吸附法; 给出了规则排列时纳米颗粒吸附岩心切片表面的强疏水特征的物理机制, 根据真实的纳米颗粒吸附岩心切片, 给出了接触角的范围, 计算结果与实验数据一致. 岩心流动实验结果表明, 经纳米颗粒分散液处理后, 岩心的平均水相渗透率提高94%.
    A compact hydrophobic nanoparticle (HNP) adsorption layer, which has miro- and nano-dual structural properties like lotus leaf, can be built by adsorbing HNP on core surfaces. A slip velocity on the surface can be produced with the purpose of reducing the water resistance and increasing water injection rate. The results are of significance for the study of HNP drag reduction technology. In this paper we give a briefing of the super hydrophobic properties of the lotus leaf, mosquito legs, and striders leg. The strong hydrophobic surface preparation method with HNP adsorption layer is presented, and physical mechanism of strong hydrophobic surfaces with regular arrangement of HNPs is given. According to the real HNP adsorption core samples, the contact angle range is given, the calculation results accord well with experimental data. Core displacement experimental results show that the average drag reduction rate can be up to 94%.
    • 基金项目: 国家自然科学基金(批准号: 50874071)、国家高技术研究发展计划(批准号: 2008AA06Z201)、上海市科委重点科技攻关计划(批准号: 071605102)、 上海高校创新团队建设项目、上海市教委科研创新项目(批准号: 11CXY32)和上海领军人才基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50874071), the National High Technology Research and Development Program of China (Grant No. 2008AA06Z201), the Key Program of Science and Technology Commission of Shanghai Municipality, China (Grant No. 071605102), Program for Innovative Research Team in Universities of Shanghai, Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 11CXY32), and Program for Outstanding Leader of Shanghai, China.
    [1]

    Neinhuis C, Barthlott W 1997 Annals of Botany 79 667

    [2]

    Shibuichi S, Yamamoto T, Onda T, Tsuiji K 1998 Langmuir 208 287

    [3]

    Gao X F, Jiang L 2006 Physics 35 559 (in Chinese) [高雪峰, 江雷 2006 物理 35 559]

    [4]

    Cottin B C, Barrat J L, Bocquet L, Charlaix E 2003 Nat. Mater. 2 237

    [5]

    Choi C, Westin K, Breuer K 2003 Physics of Fluids 15 2897

    [6]

    Wang X L, Di Q F, Zhang R L, Gu C Y 2010 Adv. Mech. 40 241 (in Chinese) [王新亮, 狄勤丰, 张任良, 顾春元 2010 力学进展 40 241]

    [7]

    Feng L, Li S, Li Y, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D 2002 Adv. Mater. 14 1857

    [8]

    Blossey R 2003 Nat. Mater. 2 301

    [9]

    Kong X Q, Wu C W 2010 Chin. Sci. Bull. 55 1589 (in Chinese) [孔祥清, 吴承伟 2010 科学通报 55 1589]

    [10]

    Gao X F, Jiang L 2003 Nature 432 36

    [11]

    Lauga E, Brenner M P, Stone H A 2005 Handbook of Experimental Fluid Dynamics (New York: Springer) Chap. 15

    [12]

    Voronov R S, Papavassiliou D V 2008 Ind. Eng. Chem. Res. 47 2455

    [13]

    Nishino T, Meguro M, Nakamae K Matsushita M, Ueda Y 1999 Langmuir 15 4321

    [14]

    Feng L, Song Y, Zhai J, Liu B, Xu J, Jiang L, Zhu D 2003 Angew. Chem. Int. Ed. 42 800

    [15]

    Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D 2004 Angew. Chem. Int. Ed. 43 2012

    [16]

    Gu C Y, Di Q F, Shi L Y, Wu F, Wang W C, Yu Z B 2008 Acta Phys. Sin. 57 3071 (in Chinese) [顾春元, 狄勤丰, 施利毅, 吴非, 王文昌, 余祖斌 2008 57 3071]

    [17]

    Patankar N A 2003 Langmuir 19 1249

    [18]

    Li D, Di Q F, Li J Y, Qian Y H, Fang H P 2007 Chin. Phys. Lett. 24 1021

    [19]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546

    [20]

    Di Q F, Shen C, Wang Z H, Gu C Y, Shi L Y, Fang H P 2009 Acta Petrolei Sinica 30 125 (in Chinese) [狄勤丰, 沈琛, 王掌洪, 顾春元, 施利毅, 方海平 2009 石油学报 30 125]

    [21]

    Rothstein J P 2010 Annual Review of Fluid Mechanics 42 89

    [22]

    Huang D M, Sendner C, Horinek D 2008 Phys. Rev. Lett. 101 226101

    [23]

    Gao P, Geng X G, Ou X L, Xue W H 2009 Acta Phys. Sin. 58 421 (in Chinese) [高鹏, 耿兴国, 欧修龙, 薛文辉 2009 58 421]

    [24]

    Gong M G, Xu X L, Yang Z 2010 Chin. Phys. B 19 056701

  • [1]

    Neinhuis C, Barthlott W 1997 Annals of Botany 79 667

    [2]

    Shibuichi S, Yamamoto T, Onda T, Tsuiji K 1998 Langmuir 208 287

    [3]

    Gao X F, Jiang L 2006 Physics 35 559 (in Chinese) [高雪峰, 江雷 2006 物理 35 559]

    [4]

    Cottin B C, Barrat J L, Bocquet L, Charlaix E 2003 Nat. Mater. 2 237

    [5]

    Choi C, Westin K, Breuer K 2003 Physics of Fluids 15 2897

    [6]

    Wang X L, Di Q F, Zhang R L, Gu C Y 2010 Adv. Mech. 40 241 (in Chinese) [王新亮, 狄勤丰, 张任良, 顾春元 2010 力学进展 40 241]

    [7]

    Feng L, Li S, Li Y, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D 2002 Adv. Mater. 14 1857

    [8]

    Blossey R 2003 Nat. Mater. 2 301

    [9]

    Kong X Q, Wu C W 2010 Chin. Sci. Bull. 55 1589 (in Chinese) [孔祥清, 吴承伟 2010 科学通报 55 1589]

    [10]

    Gao X F, Jiang L 2003 Nature 432 36

    [11]

    Lauga E, Brenner M P, Stone H A 2005 Handbook of Experimental Fluid Dynamics (New York: Springer) Chap. 15

    [12]

    Voronov R S, Papavassiliou D V 2008 Ind. Eng. Chem. Res. 47 2455

    [13]

    Nishino T, Meguro M, Nakamae K Matsushita M, Ueda Y 1999 Langmuir 15 4321

    [14]

    Feng L, Song Y, Zhai J, Liu B, Xu J, Jiang L, Zhu D 2003 Angew. Chem. Int. Ed. 42 800

    [15]

    Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D 2004 Angew. Chem. Int. Ed. 43 2012

    [16]

    Gu C Y, Di Q F, Shi L Y, Wu F, Wang W C, Yu Z B 2008 Acta Phys. Sin. 57 3071 (in Chinese) [顾春元, 狄勤丰, 施利毅, 吴非, 王文昌, 余祖斌 2008 57 3071]

    [17]

    Patankar N A 2003 Langmuir 19 1249

    [18]

    Li D, Di Q F, Li J Y, Qian Y H, Fang H P 2007 Chin. Phys. Lett. 24 1021

    [19]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546

    [20]

    Di Q F, Shen C, Wang Z H, Gu C Y, Shi L Y, Fang H P 2009 Acta Petrolei Sinica 30 125 (in Chinese) [狄勤丰, 沈琛, 王掌洪, 顾春元, 施利毅, 方海平 2009 石油学报 30 125]

    [21]

    Rothstein J P 2010 Annual Review of Fluid Mechanics 42 89

    [22]

    Huang D M, Sendner C, Horinek D 2008 Phys. Rev. Lett. 101 226101

    [23]

    Gao P, Geng X G, Ou X L, Xue W H 2009 Acta Phys. Sin. 58 421 (in Chinese) [高鹏, 耿兴国, 欧修龙, 薛文辉 2009 58 421]

    [24]

    Gong M G, Xu X L, Yang Z 2010 Chin. Phys. B 19 056701

  • [1] 刘旺旺, 张克学, 王军, 夏国栋. 过渡区内纳米颗粒的曳力特性模拟研究.  , 2024, 73(7): 075101. doi: 10.7498/aps.73.20231861
    [2] 马奥杰, 陈颂佳, 李玉秀, 陈颖. 纳米颗粒布朗扩散边界条件的分子动力学模拟.  , 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [3] 崔杰, 苏俊杰, 王军, 夏国栋, 李志刚. 自由分子区内纳米颗粒的热泳力计算.  , 2021, 70(5): 055101. doi: 10.7498/aps.70.20201629
    [4] 张旋, 张天赐, 葛际江, 蒋平, 张贵才. 表面活性剂对气-液界面纳米颗粒吸附规律的影响.  , 2020, 69(2): 026801. doi: 10.7498/aps.69.20190756
    [5] 张然, 曹小文, 徐微微, Haraguchi Masanobu, 高炳荣. 抗反射疏水红外窗口的制备研究.  , 2014, 63(5): 054201. doi: 10.7498/aps.63.054201
    [6] 范巍, 曾雉. 氧化镁纳米多晶的微结构和磁性.  , 2014, 63(4): 047503. doi: 10.7498/aps.63.047503
    [7] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率.  , 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [8] 黄小林, 侯丽珍, 喻博闻, 陈国良, 王世良, 马亮, 刘新利, 贺跃辉. Cu/C核/壳纳米结构的气相合成、形成机理及其光学性能研究.  , 2013, 62(10): 108102. doi: 10.7498/aps.62.108102
    [9] 魏杰, 陈彦均, 徐卓. 多铁性BiFeO3纳米颗粒的尺寸依赖磁性能研究.  , 2012, 61(5): 057502. doi: 10.7498/aps.61.057502
    [10] 徐波, 王树林, 李生娟, 李来强. 超声强化合成MgFe2O4纳米颗粒及其机理研究.  , 2012, 61(3): 030703. doi: 10.7498/aps.61.030703
    [11] 臧渡洋, 张永建. 水/空气界面纳米颗粒单层膜流变特性的锥体压入法研究.  , 2012, 61(2): 026803. doi: 10.7498/aps.61.026803
    [12] 陈慧敏, 刘恩隆. 纳米颗粒与纳米块材摩尔定压热容的理论计算.  , 2011, 60(6): 066501. doi: 10.7498/aps.60.066501
    [13] 臧渡洋, 张永建, Langevin Dominique. SiO2纳米颗粒单层膜流变特性的双Wilhelmy片法研究.  , 2011, 60(7): 076801. doi: 10.7498/aps.60.076801
    [14] 刘演华, 干富军, 张凯. 平面射流场中纳米颗粒的成核与凝并.  , 2010, 59(6): 4084-4092. doi: 10.7498/aps.59.4084
    [15] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响.  , 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [16] 林涛, 万能, 韩敏, 徐骏, 陈坤基. SnO2纳米晶体的制备、结构与发光性质.  , 2009, 58(8): 5821-5825. doi: 10.7498/aps.58.5821
    [17] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟.  , 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [18] 刘锦宏, 张凌飞, 田庚方, 李济晨, 李发伸. 低温固相反应法制备的NiFe2O4纳米颗粒的结构与磁性.  , 2007, 56(10): 6050-6055. doi: 10.7498/aps.56.6050
    [19] 李 晖, 谢二庆, 张洪亮, 潘孝军, 张永哲. 火焰喷雾法合成ZnO和MgxZn1-xO纳米颗粒的光学性能研究.  , 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [20] 王 丽, 王海波, 王 涛, 李发伸. CoFe2O4纳米颗粒的结构、磁性以及离子迁移.  , 2006, 55(12): 6515-6521. doi: 10.7498/aps.55.6515
计量
  • 文章访问数:  7040
  • PDF下载量:  803
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-06
  • 修回日期:  2012-05-31
  • 刊出日期:  2012-11-05

/

返回文章
返回
Baidu
map