-
基于部分耗尽型绝缘层上硅(SOI)器件的能带结构,从电荷堆积机理的电场因素入手, 为改善辐照条件下背栅Si/SiO2界面的电场分布,将半导体金属氧化物(MOS)器件和平板电容模型相结合, 建立了背栅偏置模型.为验证模型,利用合金烧结法将背栅引出加负偏置,对NMOS和PMOS进行辐照试验, 得出: NMOS背栅接负压,可消除背栅效应对器件性能的影响,改善器件的前栅I-V特性; 而PMOS背栅接负压,则会使器件的前栅I-V性能恶化.因此,在利用背栅偏置技术改善SOI/NMOS器件性能的同时, 也需要考虑背栅偏置对PMOS的影响,折中选取偏置电压.该研究结果为辐照条件下部分耗尽型SOI/MOS器件 背栅效应的改善提供了设计加固方案,也为宇航级集成电路设计和制造提供了理论支持.According to the partially depleted SOI/MOS device's band gap, starting with the electric field, which is a factor of back-gate charge stack, we combine SOI device capacitance model and flat capacitance model for finding the way to keep electric field at the interface of Si/SiO2, and build a back-gate bias model. For validating the new model, we use alloy-agglomeration at the back gate. After radiation experiments, we compare the results of back-gate effect on NMOS with those on PMOS. It is concluded that as far as NMOS is concerned, negative voltage at back-gate can eliminate the back-gate effect which influence the performance of device, and improves the performance of front-gate. However negative voltage at back-gate makes the performance of PMOS worse. Therefore, when we use the back-gate bias to improve the performance of device, we must consider the performances of NMOS and PMOS and compromise the choice of the voltage which is applied to the back-gate. This research supplies not only a design scheme for hardening back-gate effect of SOI devices under radiation condition, but also a support in theory for integrated circuit design and manufacture, which is used in space.
-
Keywords:
- silicon on insulation /
- total dose effect /
- back-gate effect /
- back-gate bias
[1] Zheng Z S, Zhang E X, Liu Z L, Zhang Z X, Li N, Li G H 2007 Acta Phys. Sin. 56 5446 (in Chinese) [郑中山, 张恩霞, 刘忠立, 张正选, 李宁, 李国花 2007 56 5446]
[2] Zheng Z S, Liu Z L, Zhang G Q, Li N, Fan K, Zhang E X, Yi W B, Chen M, Wang X 2005 Acta Phys. Sin. 54 348 (in Chinese) [郑中山, 刘忠立, 张国强, 李宁, 范楷, 张恩霞, 易万兵, 陈猛, 王曦 2005 54 348]
[3] Li L L, Yu Z G, Xiao Z Q, Zhou X J 2011 Acta Phys. Sin. 60 098502 (in Chinese) [李蕾蕾, 于宗光, 肖志强, 周昕杰 2011 60 098502]
[4] Li J, Liu H X, Li B, Cao L, Yuan B 2010 Acta Phys. Sin. 59 8131 (in Chinese) [李劲, 刘红侠, 李斌, 曹磊, 袁博 2010 59 8131]
[5] Barnaby H J, Mclain M L, Esqueda I S 2008 Proceedings of the 2008 IEEE Custom Integrated Circuits Conference San Jose, USA, September 21-24, 2008 p273
[6] Wu W M, Yao W, Gildenblat G 2008 IEEE Trans. Elec. Dev. 55 3295
[7] Schwank J R, Shaneyfelt M R, Dodd P E 2000 IEEE Trans. Nucl. Sci. 47 2175
[8] Ferlet-Cavrois V, Colladant T, Paillet P 2000 IEEE Trans. Nucl. Sci. 45 1817
[9] Mrstik B J, Hughes H L, McMarr P J 2000 IEEE Trans. Nucl. Sci. 47 2189
[10] Schwank J R, Shaneyfelt M R, Fleetwood D M 2008 IEEE Trans. Nucl. Sci. 55 1833
[11] Schwank J R, Ferlet-Cavrois V, Shaneyfelt M R 2003 IEEE Trans. Nucl. Sci. 50 522
[12] Ceschia M, Paccagnella A, Cester A 1998 IEEE Trans. Nucl. Sci. 45 2375
[13] Shaneyfelt M R, Schwank J R, Fleetwood D M 1990 IEEE Trans. Nucl. Sci. 37 632
[14] Schwank J R, Winokur P S, Sexton F W 1986 IEEE Trans. Nucl. Sci. 33 1178
[15] Liu S T, Balster S, Sinha S 1999 IEEE Trans. Nucl. Sci. 46 1817
-
[1] Zheng Z S, Zhang E X, Liu Z L, Zhang Z X, Li N, Li G H 2007 Acta Phys. Sin. 56 5446 (in Chinese) [郑中山, 张恩霞, 刘忠立, 张正选, 李宁, 李国花 2007 56 5446]
[2] Zheng Z S, Liu Z L, Zhang G Q, Li N, Fan K, Zhang E X, Yi W B, Chen M, Wang X 2005 Acta Phys. Sin. 54 348 (in Chinese) [郑中山, 刘忠立, 张国强, 李宁, 范楷, 张恩霞, 易万兵, 陈猛, 王曦 2005 54 348]
[3] Li L L, Yu Z G, Xiao Z Q, Zhou X J 2011 Acta Phys. Sin. 60 098502 (in Chinese) [李蕾蕾, 于宗光, 肖志强, 周昕杰 2011 60 098502]
[4] Li J, Liu H X, Li B, Cao L, Yuan B 2010 Acta Phys. Sin. 59 8131 (in Chinese) [李劲, 刘红侠, 李斌, 曹磊, 袁博 2010 59 8131]
[5] Barnaby H J, Mclain M L, Esqueda I S 2008 Proceedings of the 2008 IEEE Custom Integrated Circuits Conference San Jose, USA, September 21-24, 2008 p273
[6] Wu W M, Yao W, Gildenblat G 2008 IEEE Trans. Elec. Dev. 55 3295
[7] Schwank J R, Shaneyfelt M R, Dodd P E 2000 IEEE Trans. Nucl. Sci. 47 2175
[8] Ferlet-Cavrois V, Colladant T, Paillet P 2000 IEEE Trans. Nucl. Sci. 45 1817
[9] Mrstik B J, Hughes H L, McMarr P J 2000 IEEE Trans. Nucl. Sci. 47 2189
[10] Schwank J R, Shaneyfelt M R, Fleetwood D M 2008 IEEE Trans. Nucl. Sci. 55 1833
[11] Schwank J R, Ferlet-Cavrois V, Shaneyfelt M R 2003 IEEE Trans. Nucl. Sci. 50 522
[12] Ceschia M, Paccagnella A, Cester A 1998 IEEE Trans. Nucl. Sci. 45 2375
[13] Shaneyfelt M R, Schwank J R, Fleetwood D M 1990 IEEE Trans. Nucl. Sci. 37 632
[14] Schwank J R, Winokur P S, Sexton F W 1986 IEEE Trans. Nucl. Sci. 33 1178
[15] Liu S T, Balster S, Sinha S 1999 IEEE Trans. Nucl. Sci. 46 1817
计量
- 文章访问数: 8573
- PDF下载量: 568
- 被引次数: 0