搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光注入半导体激光器单周期振荡的光子微波产生及全光线宽窄化

林晓东 邓涛 解宜原 吴加贵 陈建国 吴正茂 夏光琼

引用本文:
Citation:

基于光注入半导体激光器单周期振荡的光子微波产生及全光线宽窄化

林晓东, 邓涛, 解宜原, 吴加贵, 陈建国, 吴正茂, 夏光琼

Generation of photonic microwave based on the period-one oscillation of an optically injected semiconductor lasers and all-optical linewidth narrowing

Lin Xiao-Dong, Deng Tao, Xie Yi-Yuan, Wu Jia-Gui, Chen Jian-Guo, Wu Zheng-Mao, Xia Guang-Qiong
PDF
导出引用
  • 本文对基于光注入半导体激光器的单周期动力学态产生光子微波并利用光反馈压缩其线宽进行了实验研究. 研究结果表明: 通过适当调节注入参数, 能对该方法产生的光子微波频率在数十GHz范围内进行连续、大范围地调节; 通过引入光反馈并精细调节反馈强度, 光子微波的线宽能够从40—100 MHz的范围被压缩约两个数量级至300—900 kHz范围;反馈长度对光子微波的线宽几乎没有影响, 但当反馈长度精细变化时, 光子微波频率会出现一定范围内的周期性漂移.
    Based on the single period dynamics of optically injected semiconductor laser, the generation of photonic microwave and its linewidth narrowing effect by introducing optical feedback are experimentally demonstrated. The experimental results show that the photonic microwave frequency can be continuously and widely tuned in a range of several ten GHz by adjusting the injection parameters. By introducing an optical feedback and properly adjusting the feedback strength, the photonic microwave linewidth is reduced by about two orders of magnitude from a range of 40-100 MHz to a range of 300-900 kHz. The influence of optical feedback length on the microwave linewidth is not obvious except that the photonic microwave frequency exhibits an periodical variation in a small range when the feedback length is finely varied in a small range.
    • 基金项目: 国家自然科学基金(批准号: 60978003, 61078003, 61178011, 11004161, 61275116)、重庆市自然科学基金 (批准号: CSTC2012jjB40011, CSTCjjA40015)和中央高校基本科研业务费专项资金(批准号: XDJK2010C019)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60978003, 61078003, 61178011, 11004161, 61275116), the Natural Science Foundation of Chongqing City (Grant Nos. CSTC2012jjB40011, CSTCjjA40015), and the Fundamental Research Funds for the Central Universities (Grant No. XDJK2010C019).
    [1]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347

    [2]

    Simpson T B, Liu J M, Gavrielides A, Kovanis V, Alsing P M 1994 Appl. Phys. Lett. 64 3539

    [3]

    Kong H J, Wu Z M, Wu J G, Xie Y K, Lin X D, Xia G Q 2008 Chaos, Solitons and Fractals 36 18

    [4]

    Wang L, Lin X D, Wu Z M, Ping X X, Xia G Q 2010 Laser Phys. 20 1957

    [5]

    Simpson T B, Liu J M 1997 IEEE Photon. Technol. Lett. 9 1322

    [6]

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭萍 2007 56 4372]

    [7]

    Liu S F, Xia G Q, Wu J G, Li L F, Wu Z M 2008 Acta Phys. Sin. 57 1502 (in Chinese) [刘胜芳, 夏光琼, 吴加贵, 李林福, 吴正茂 2008 57 1502]

    [8]

    Okajima Y, Hwang S K, Liu J M 2003 Opt. Commun. 219 357

    [9]

    Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921

    [10]

    Niu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241 (in Chinese) [牛生晓, 王云才, 贺虎成, 张明江 2009 58 7241]

    [11]

    Deng T, Xia G Q, Wu Z M, Lin X D, Wu J G 2011 Opt. Express 19 8762

    [12]

    Lin X D, Xia G Q, Deng T, Chen J G, Wu Z M 2009 Optoelectron. and Adv. Materials-Rapid Commun. 3 1129

    [13]

    Yan S L 2008 Acta Phys. Sin. 57 2819 (in Chinese) [颜森林 2008 57 2819]

    [14]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 682

    [15]

    Ogawa H, Polifko D, Banba S 1992 IEEE Trans. Microwave Theory Tech. 40 2285

    [16]

    Wake D, Webster M, Wimpenny G, Beacham K, Crawford L 2004 IEEE Int. Topical Meeting Microwave Photonics (MWP 2004) 157

    [17]

    Kjebon O, Schatz R, Lourdudoss S, Nilsson S, StAlnacke B, Backbom L 1997 Electron. Lett. 33 488

    [18]

    Hyodo M, Abedin K S, Onodera N 1999 Opt. Commun. 171 159

    [19]

    Johansson L A, Seeds A J 2003 J. Lightwave Technol. 21 511

    [20]

    Novak D, Ahmed Z, R. Waterhouse B, Tucker R S 1995 IEEE Trans. Microwave Theory Tech. 43 2257

    [21]

    Pajarola S, Guekos G, Nizzola P, Kawaguchi H 1999 IEEE Trans. Microwave Theory Tech. 47 1234

    [22]

    Chan S C, Diaz R, Liu J M 2008 Opt. Quantum Electron. 40 83

    [23]

    Chan S C, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 1025

    [24]

    Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921

    [25]

    Chan S C, Liu J M 2006 IEEE J. Quantum Electron. 42 699

    [26]

    Hyodo M, Abedin K S, Onodera N 1999 Opt. Commun. 171 159

    [27]

    Kaszubowska A, Anandarajah P, Barry L P 2002 IEEE Photon. Technol. Lett. 14 233

    [28]

    Simpson T B, Doft F 1999 IEEE Photon. Technol. Lett. 11 1476

    [29]

    Simpson T B 1999 Opt. Commun. 170 93

    [30]

    Genest J, Chamberland M, Tremblay P, Tetu M 1997 IEEE J. Quantum Electron. 33 989

    [31]

    Zhang M J, Liu T G, Wang A B, Zheng J Y, Meng L N, Zhang Z X, Wang Y C 2011 Opt. Lett. 36 1008

  • [1]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347

    [2]

    Simpson T B, Liu J M, Gavrielides A, Kovanis V, Alsing P M 1994 Appl. Phys. Lett. 64 3539

    [3]

    Kong H J, Wu Z M, Wu J G, Xie Y K, Lin X D, Xia G Q 2008 Chaos, Solitons and Fractals 36 18

    [4]

    Wang L, Lin X D, Wu Z M, Ping X X, Xia G Q 2010 Laser Phys. 20 1957

    [5]

    Simpson T B, Liu J M 1997 IEEE Photon. Technol. Lett. 9 1322

    [6]

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭萍 2007 56 4372]

    [7]

    Liu S F, Xia G Q, Wu J G, Li L F, Wu Z M 2008 Acta Phys. Sin. 57 1502 (in Chinese) [刘胜芳, 夏光琼, 吴加贵, 李林福, 吴正茂 2008 57 1502]

    [8]

    Okajima Y, Hwang S K, Liu J M 2003 Opt. Commun. 219 357

    [9]

    Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921

    [10]

    Niu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241 (in Chinese) [牛生晓, 王云才, 贺虎成, 张明江 2009 58 7241]

    [11]

    Deng T, Xia G Q, Wu Z M, Lin X D, Wu J G 2011 Opt. Express 19 8762

    [12]

    Lin X D, Xia G Q, Deng T, Chen J G, Wu Z M 2009 Optoelectron. and Adv. Materials-Rapid Commun. 3 1129

    [13]

    Yan S L 2008 Acta Phys. Sin. 57 2819 (in Chinese) [颜森林 2008 57 2819]

    [14]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 682

    [15]

    Ogawa H, Polifko D, Banba S 1992 IEEE Trans. Microwave Theory Tech. 40 2285

    [16]

    Wake D, Webster M, Wimpenny G, Beacham K, Crawford L 2004 IEEE Int. Topical Meeting Microwave Photonics (MWP 2004) 157

    [17]

    Kjebon O, Schatz R, Lourdudoss S, Nilsson S, StAlnacke B, Backbom L 1997 Electron. Lett. 33 488

    [18]

    Hyodo M, Abedin K S, Onodera N 1999 Opt. Commun. 171 159

    [19]

    Johansson L A, Seeds A J 2003 J. Lightwave Technol. 21 511

    [20]

    Novak D, Ahmed Z, R. Waterhouse B, Tucker R S 1995 IEEE Trans. Microwave Theory Tech. 43 2257

    [21]

    Pajarola S, Guekos G, Nizzola P, Kawaguchi H 1999 IEEE Trans. Microwave Theory Tech. 47 1234

    [22]

    Chan S C, Diaz R, Liu J M 2008 Opt. Quantum Electron. 40 83

    [23]

    Chan S C, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 1025

    [24]

    Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921

    [25]

    Chan S C, Liu J M 2006 IEEE J. Quantum Electron. 42 699

    [26]

    Hyodo M, Abedin K S, Onodera N 1999 Opt. Commun. 171 159

    [27]

    Kaszubowska A, Anandarajah P, Barry L P 2002 IEEE Photon. Technol. Lett. 14 233

    [28]

    Simpson T B, Doft F 1999 IEEE Photon. Technol. Lett. 11 1476

    [29]

    Simpson T B 1999 Opt. Commun. 170 93

    [30]

    Genest J, Chamberland M, Tremblay P, Tetu M 1997 IEEE J. Quantum Electron. 33 989

    [31]

    Zhang M J, Liu T G, Wang A B, Zheng J Y, Meng L N, Zhang Z X, Wang Y C 2011 Opt. Lett. 36 1008

  • [1] 盛泉, 王盟, 史朝督, 田浩, 张钧翔, 刘俊杰, 史伟, 姚建铨. 基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器.  , 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [2] 麻艳娜, 王文睿, 宋开臣, 于晋龙, 马闯, 张华芳. 基于双波长时域合成技术的微波光子波形产生.  , 2019, 68(17): 174203. doi: 10.7498/aps.68.20190151
    [3] 张孔, 白建东, 何军, 王军民. 激光线宽对单次通过PPMgO:LN晶体倍频效率的影响.  , 2016, 65(7): 074207. doi: 10.7498/aps.65.074207
    [4] 张华芳, 王文睿, 于晋龙, 王菊, 杨恩泽. 基于偏振延时干涉技术的光子波形产生技术研究.  , 2016, 65(22): 224203. doi: 10.7498/aps.65.224203
    [5] 孙波, 吴加贵, 王顺天, 吴正茂, 夏光琼. 基于平行偏振光注入的1550nm波段垂直腔表面发射激光器获取窄线宽光子微波的理论和实验研究.  , 2016, 65(1): 014207. doi: 10.7498/aps.65.014207
    [6] 石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月. 光子晶体光纤飞秒激光非线性放大系统的耦合动力学过程研究.  , 2015, 64(9): 094203. doi: 10.7498/aps.64.094203
    [7] 张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏. 基于波长调制光谱技术的线宽测量理论及其应用研究.  , 2015, 64(5): 053301. doi: 10.7498/aps.64.053301
    [8] 周娅, 吴正茂, 樊利, 孙波, 何洋, 夏光琼. 基于椭圆偏振光注入垂直腔表面发射激光器的正交偏振模式单周期振荡产生两路光子微波.  , 2015, 64(20): 204203. doi: 10.7498/aps.64.204203
    [9] 毛嵩, 吴正茂, 樊利, 杨海波, 赵茂戎, 夏光琼. 基于次谐波调制光注入半导体激光器获取窄线宽微波信号的实验研究.  , 2014, 63(24): 244204. doi: 10.7498/aps.63.244204
    [10] 邰朝阳, 侯飞雁, 王盟盟, 权润爱, 刘涛, 张首刚, 董瑞芳. 光纤激光经过模清洁器后的强度噪声分析.  , 2014, 63(19): 194203. doi: 10.7498/aps.63.194203
    [11] 陈兴华, 林晓东, 吴正茂, 樊利, 曹体, 夏光琼. 基于偏振旋转光反馈下的外光注入VCSEL产生高性能毫米波.  , 2012, 61(9): 094209. doi: 10.7498/aps.61.094209
    [12] 邓舒鹏, 李文萃, 黄文彬, 刘永刚, 鲁兴海, 宣丽. 基于透射式液晶/聚合物光栅的分布反馈式激光器的研究.  , 2011, 60(5): 056102. doi: 10.7498/aps.60.056102
    [13] 师应龙, 董晨钟. C Ⅱ离子1s内壳层激发态的结构和衰变特性的理论研究.  , 2009, 58(4): 2350-2357. doi: 10.7498/aps.58.2350
    [14] 刘四平, 张玉驰, 张鹏飞, 李刚, 王军民, 张天才. 减反膜外腔半导体激光器特性的研究.  , 2009, 58(1): 285-289. doi: 10.7498/aps.58.285.1
    [15] 高 玮, 吕志伟, 何伟明, 朱成禹, 董永康. 水中微弱光散射布里渊频谱选择性光放大研究.  , 2007, 56(5): 2693-2698. doi: 10.7498/aps.56.2693
    [16] 杨振军, 胡 巍, 傅喜泉, 陆大全, 郑一周. 超短啁啾脉冲光束空间奇异性的形成与消除.  , 2003, 52(8): 1920-1924. doi: 10.7498/aps.52.1920
    [17] 彭洪尚, 宋宏伟, 陈宝玖, 王绩伟, 吕少哲, 孔祥贵, 李殿超. 变温下Y2O3∶Eu3+纳米晶的荧光光谱和动力学过程.  , 2002, 51(12): 2875-2880. doi: 10.7498/aps.51.2875
    [18] 傅喜泉, 郭弘, 胡巍, 刘承宜, 王筱平. 超短脉冲光束传输缓变包络近似理论的失效和空间奇异性的形成与消除.  , 2001, 50(9): 1693-1698. doi: 10.7498/aps.50.1693
    [19] 杨苏辉, 张汉壮, 国秀珍, 王 冬, 高锦岳. 激光场的线宽对双光子电磁感应光透明及共振吸收增强的影响.  , 1998, 47(6): 931-937. doi: 10.7498/aps.47.931
    [20] 郭长志, 黄永箴. 非线性增益和波导结构对半导体激光器的谱线宽度的作用.  , 1989, 38(5): 699-705. doi: 10.7498/aps.38.699
计量
  • 文章访问数:  7497
  • PDF下载量:  574
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-05
  • 修回日期:  2012-06-20

/

返回文章
返回
Baidu
map