-
实验研究了处于单周期振荡的光注入半导体激光器在频率等于单周期振荡频率一半的1/2次谐波调制下所产生的微波信号的特性. 实验结果显示: 在合适的注入条件下, 处于单周期(P1)振荡的光注入半导体激光器可输出频率可达26.5 GHz、光谱具有单边带结构的光生微波信号, 但微波信号的线宽比较宽(MHz量级); 通过采用频率为单周期振荡频率一半的次谐波信号调制光注入半导体激光器, 可将微波线宽从十几MHz 压缩到几十kHz. 进一步分析了次谐波调制信号的功率以及频率对微波信号的相位噪声的影响, 并在由次谐波调制信号的功率和频率构成的参数空间绘制出了能实现次谐波频率锁定的分布区域.The performances of microwave signals generated by an optically injected semiconductor laser operated at the period-one (P1) oscillation under 1/2 subharmonic microwave modulation, are investigated experimentally. The experimental results show that under suitable injection condition, the microwave signal output from an optically injected semiconductor operated at P1 oscillation can reach a frequency of 26.5 GHz limited to the experimental conditions and may have a single sideband optical spectrum structure, but the linewidth of the microwave signal is relatively wide (on the order of MHz). After adopting 1/2 subharmonic locking technique, the linewidth of the obtained microwave signal can be reduced from tens of MHz to tens of kHz. Furthermore, we analyze the influences of the power and frequency of the subharmonic microwave on the phase noise of the generated microwave signals, and further map the subharmonic microwave locking region in the parameter space of the power and frequency of the subharmonic microwave.
-
Keywords:
- optically injected semiconductor laser /
- period-one (P1) oscillation /
- photonic microwave generation /
- subharmonic microwave modulation
[1] Cooper A J 1990 Electron. Lett. 26 2054
[2] Capmany J, Novak D 2007 Nature Photon. 1 319
[3] Choi S T, Yang K S, Nishi S, Shimizu S, Toluda K, Kim Y H 2006 IEEE Trans. Microwave Theory Tech. 54 1953
[4] Chan S C, Hwang S K, Liu J M 2006 Opt. Lett. 31 2254
[5] Kim A, Joo Y H, Kim Y 2004 IEEE Trans. Consumer Electron. 50 517
[6] Kaszubowska A, Barry L P, Anandarajah P 2003 IEEE Photon. Technol. Lett. 15 852
[7] Liu G H, Pei L, Ning T G, Gao S, Li J, Zhang Y J 2012 Acta Phys. Sin. 61 094205 (in Chinese) [刘观辉, 裴丽, 宁提纲, 高嵩, 李晶, 张义军 2012 61 094205]
[8] Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921
[9] Hyodo M, Abedin K S, Onodera N 1999 Opt. Commun. 171 159
[10] Han J, Seo B J, Han Y, Jalali B, Fetterman H R 2003 IEEE/OSA J. Lightwave Technol. 21 1504
[11] Wake D, Lima C R, Davies P A 1996 IEEE Photon. Technol. Lett. 8 578
[12] Ryu H S, Seo Y K, Choi W Y 2004 IEEE Photon. Technol. Lett. 16 1942
[13] Simpson T B, Liu J M, Huang K F, Tai K 1997 Quantum Semiclass. Opt. 9 765
[14] Yan S L 2009 Acta Opt. Sin. 29 996 (in Chinese) [颜森林 2009 光学学报 29 996]
[15] Ren X L, Wu Z M, Fan L, Xia G Q 2014 Chin. Sci. Bull. 59 259 (in Chinese) [任小丽, 吴正茂, 樊利, 夏光琼 2014 科学通报 59 259]
[16] Zhang M, Liu T, Wang A, Zhang J, Wang Y 2011 Opt. Commun. 284 1289
[17] Simpson T B, Doft F 1999 IEEE Photon. Technol. Lett. 11 1476
[18] Chan S C 2010 IEEE J. Quantum Electron. 46 421
[19] Qi X Q, Liu J M 2011 IEEE J. Sel. Top. Quantum Electron. 17 1198
[20] Chan S C, Diaz R, Liu J M 2008 Opt. Quantum Electron. 40 83
[21] Niu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241 (in Chinese) [牛生晓, 王云才, 贺虎成, 张明江 2009 58 7241]
[22] Zhuang J P, Chan S C 2013 Opt. Lett. 38 344
[23] Chan S C, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 1025
[24] Simpson T B 1999 Opt. Commun. 170 93
[25] Chan S C, Liu J M 2005 IEEE J. Quantum Electron. 41 1142
[26] Chen X H, Lin X D, Wu Z M, Fan L, Cao T, Xia G Q 2012 Acta Phys. Sin. 61 094209 (in Chinese) [陈兴华, 林晓东, 吴正茂, 樊利, 曹体, 夏光琼 2012 61 094209]
[27] Winful H G, Chen Y C, Liu J M 1986 Appl. Phys. Lett. 48 616
-
[1] Cooper A J 1990 Electron. Lett. 26 2054
[2] Capmany J, Novak D 2007 Nature Photon. 1 319
[3] Choi S T, Yang K S, Nishi S, Shimizu S, Toluda K, Kim Y H 2006 IEEE Trans. Microwave Theory Tech. 54 1953
[4] Chan S C, Hwang S K, Liu J M 2006 Opt. Lett. 31 2254
[5] Kim A, Joo Y H, Kim Y 2004 IEEE Trans. Consumer Electron. 50 517
[6] Kaszubowska A, Barry L P, Anandarajah P 2003 IEEE Photon. Technol. Lett. 15 852
[7] Liu G H, Pei L, Ning T G, Gao S, Li J, Zhang Y J 2012 Acta Phys. Sin. 61 094205 (in Chinese) [刘观辉, 裴丽, 宁提纲, 高嵩, 李晶, 张义军 2012 61 094205]
[8] Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921
[9] Hyodo M, Abedin K S, Onodera N 1999 Opt. Commun. 171 159
[10] Han J, Seo B J, Han Y, Jalali B, Fetterman H R 2003 IEEE/OSA J. Lightwave Technol. 21 1504
[11] Wake D, Lima C R, Davies P A 1996 IEEE Photon. Technol. Lett. 8 578
[12] Ryu H S, Seo Y K, Choi W Y 2004 IEEE Photon. Technol. Lett. 16 1942
[13] Simpson T B, Liu J M, Huang K F, Tai K 1997 Quantum Semiclass. Opt. 9 765
[14] Yan S L 2009 Acta Opt. Sin. 29 996 (in Chinese) [颜森林 2009 光学学报 29 996]
[15] Ren X L, Wu Z M, Fan L, Xia G Q 2014 Chin. Sci. Bull. 59 259 (in Chinese) [任小丽, 吴正茂, 樊利, 夏光琼 2014 科学通报 59 259]
[16] Zhang M, Liu T, Wang A, Zhang J, Wang Y 2011 Opt. Commun. 284 1289
[17] Simpson T B, Doft F 1999 IEEE Photon. Technol. Lett. 11 1476
[18] Chan S C 2010 IEEE J. Quantum Electron. 46 421
[19] Qi X Q, Liu J M 2011 IEEE J. Sel. Top. Quantum Electron. 17 1198
[20] Chan S C, Diaz R, Liu J M 2008 Opt. Quantum Electron. 40 83
[21] Niu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241 (in Chinese) [牛生晓, 王云才, 贺虎成, 张明江 2009 58 7241]
[22] Zhuang J P, Chan S C 2013 Opt. Lett. 38 344
[23] Chan S C, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 1025
[24] Simpson T B 1999 Opt. Commun. 170 93
[25] Chan S C, Liu J M 2005 IEEE J. Quantum Electron. 41 1142
[26] Chen X H, Lin X D, Wu Z M, Fan L, Cao T, Xia G Q 2012 Acta Phys. Sin. 61 094209 (in Chinese) [陈兴华, 林晓东, 吴正茂, 樊利, 曹体, 夏光琼 2012 61 094209]
[27] Winful H G, Chen Y C, Liu J M 1986 Appl. Phys. Lett. 48 616
计量
- 文章访问数: 5687
- PDF下载量: 497
- 被引次数: 0