搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机发光二极管的光致磁电导效应

焦威 雷衍连 张巧明 刘亚莉 陈林 游胤涛 熊祖洪

引用本文:
Citation:

有机发光二极管的光致磁电导效应

焦威, 雷衍连, 张巧明, 刘亚莉, 陈林, 游胤涛, 熊祖洪

Light-induced magnetoconductance effect in organic light-emitting diodes

Jiao Wei, Lei Yan-Lian, Zhang Qiao-Ming, Liu Ya-Li, Chen Lin, You Yin-Tao, Xiong Zu-Hong
PDF
导出引用
  • 制备了结构为ITO/CuPc/NPB/Alq3/LiF/Al的常规有机发光二极管, 之后对器件采用波长为442 nm和325 nm的激光线进行照射产生激子, 并在小偏压下(保证器件没有开启)对激子的演化过程进行控制, 同时测量器件的光致磁电导(photo-induced magneto-conductance, PIMC). 实验发现, 不同于电注入产生激子的磁电导效应, PIMC在正、反小偏压下表现出明显不同的磁响应结果. 当给器件加上正向小偏压时, 器件的PIMC在0-40 mT范围内迅速上升; 随着磁场的进一步增大, 该PIMC增加缓慢, 并逐渐趋于饱和. 反向小偏压时, 器件的PIMC随着磁场也是先迅速增大(0-40 mT), 但达到最大值后却又逐渐减小. 通过分析外加磁场对器件光生载流子微观过程的影响, 采用'电子-空穴对'模型和超精细相互作用理论对正向偏压下的PIMC进行了解释; 反向偏压下因各有机层的能级关系, 为激子与电荷相互作用提供了必要条件, 运用三重态激子与电荷的反应机制可以解释PIMC出现高场下降的实验现象.
    Organic light-emitting diode with a structure of ITO/CuPc/NPB/Alq3/LiF/Al is fabricated. The excitons of the device are produced by laser irradiation using two kinds of laser beams which are at 442 nm and 325 nm, and the evolutions of the excitons are controlled by a small bias (which is either positive or negative, and ensures that the device does not turn on). The photo-induced magneto-conductance (PIMC), which is the dark current of the device showing no magnetic response at a small bias, is also measured at the same time. It is found that unlike the magneto-conductance in the electrical injection case, the PIMC presents significantly different results at the positive and negative small bias. The PIMC of the device increases rapidly in a range of 0-40 mT at a small forward bias, then increases slowly with the further increase of magnetic field, and finally becomes saturated gradually. But in the case of small reverse bias, although the PIMC of the device also first increases rapidly with the increase of magnetic field (0-40 mT), but it decreases after its maximum value has been reached. By using a composite model of electron-hole pairs and the theory of hyperfine interaction, the PIMC effect at the forward bias can be explained by analyzing the effects of the applied magnetic field on the micro-processes of the light-generated carrier of the device. When the device is in the case of reverse bias, due to the fact that the relationship of the energy-band of each organic layer provides the necessary conditions for the interactions between exciton and charge, the decrease of PIMC in high magnetic-fields can be attributed to the mechanism of reaction between triplet exciton and charge.
    • 基金项目: 重庆市科委自然科学基金(批准号: CSTC, 2010BA6002);国家自然科学基金(批准号: 10974157);复旦大学应用表面物理国家重点实验室开放课题(批准号: KL201106)和中央高校基本科研业务费专项资金(批准号: XDJK2009A001, XDJK2011C041)资助的课题.
    • Funds: Project supported by Natural Science Foundation of CQ CSTC, China (Grant No. CSTC, 2010BA6002), the National Natural Science Foundation of China (Grant No. 10974157), the Open Project Support by State Key Laboratory of Surface Physics and Department of Physics, China (Grant No. KL2011_06), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. XDJK2009A001, XDJK2011C041).
    [1]

    Kalinowski J, Cocchi M, Virgili D, Marco D P, Fattori V 2003 Chem. Phys. Lett. 380 710

    [2]

    Wang Z, He Z H, Tan X W, Tao M L, Li G Q, Xiong Z H 2007 Acta Phy. Sin. 56 2979 (in Chinese) [王振, 何正红, 谭兴文, 陶敏龙, 李国庆, 熊祖洪 2007 56 2979]

    [3]

    Odaka H, Okamoto H, Kawasaki M, Tokura Y 2006 Appl. Phys. Lett. 88 123501

    [4]

    Mermer Ö, Veeraraghavan G, Francis T L, Wohlgenannt M 2005 Solid Communications 134 631

    [5]

    Desai P, Shakya P, Kreouzis T, Gillin W P 2007 J. Appl. Phys. 102 073710

    [6]

    Xin L Y, Li C N, Li F, Liu S Y, Hu B 2009 Appl. Phys. Lett. 95 123306

    [7]

    Chen P, Lei Y L, Song Q L, Zhang Y, Liu R, Zhang Q M, Xiong Z H 2009 Appl. Phys. Lett. 95 213304

    [8]

    Chen P, Song Q L, Choy W C H, Ding B F, Liu Y L, Xiong Z H 2011 Appl. Phys. Lett. 99 143305

    [9]

    Li F, Xin L Y, Liu S Y, Hu B 2010 Appl. Phys. Lett. 97 073301

    [10]

    Mermer Ö, Veeraraghavan G, Francis T L, Sheng Y, Nguyen D T, Wohlgenannt M, Köhler A, Al-Suti M K, Khan M S 2005 Phys. Rev. B 72 205202

    [11]

    Xiong Z H, Wu D, Vardney Z V, Shi J 2004 Nature 427 821

    [12]

    Nguyen T D, Sheng Y, Rybicki J, Wohlgenannt M 2008 Phys. Rev. B 77 235209

    [13]

    Hu B, Wu Y 2007 Nature Materials 6 985

    [14]

    Ren J F, Fu J Y, Liu D S, Xie S J 2004 Acta Phys. Sin. 53 3814 (in Chinese) [任俊峰, 付吉永, 刘德胜, 谢士杰 2004 53 3814]

    [15]

    Zhang Q M, Lei Y L, Song Q L, Chen P, Zhang Y, Xiong Z H 2011 Phys. Rev. Lett. 98 243303

    [16]

    Bobbert P A, Nguyen T D, van Oost F W A, Koopmans B, Wohlgenannt M 2007 Phys. Rev. Lett. 99 216801

    [17]

    Zhang Y, Liu R, Leng Z H 2010 Acta Phys. Sin. 59 5817 (in Chinese) [张勇, 刘荣, 雷衍连, 陈平, 张巧明, 熊祖洪 2010 59 5817]

    [18]

    Lei Y L, Liu R, Zhang Y, Tan X W, Xiong Z H 2009 Acta Phys. Sin. 58 1269 (in Chinese) [雷衍连, 刘荣, 张勇, 谭兴文, 熊祖洪 2009 58 1269]

    [19]

    Sheng Y, Nguyen T D, Mermer Ö, Wohlgenannt M, Scherf U 2006 Phys. Rev. B 74 045213

    [20]

    Bloom F L, Wagemans W, Kemerink M, Koopmans B 2007 Phys. Rev. Lett. 99 257201

    [21]

    Frankevich E L, Lymarev A A, Sokolik I, Karasz F E, Blumstengel S, Baughman R H, Hrhold H H 1992 Phys. Rev. B 46 9320

    [22]

    Desai P, Shakya P, Kreouzis T, Gillin W P, Morley N A, Gibbs M R J 2007 Phys. Rev. B 75 094423

    [23]

    Wohlgenannt M, Vardeny Z V 2003 J. Phys. Condens. Matter 15 R83

    [24]

    Ito F, Ikoma T, Akiyama K, Watanabe A, Tero-Kubota S 2005 J. Phys. Chem. 109 8707

    [25]

    Doubleday Jr C, Turro N J, Wang J F 1989 Acc. Chem. Res. 22 199

  • [1]

    Kalinowski J, Cocchi M, Virgili D, Marco D P, Fattori V 2003 Chem. Phys. Lett. 380 710

    [2]

    Wang Z, He Z H, Tan X W, Tao M L, Li G Q, Xiong Z H 2007 Acta Phy. Sin. 56 2979 (in Chinese) [王振, 何正红, 谭兴文, 陶敏龙, 李国庆, 熊祖洪 2007 56 2979]

    [3]

    Odaka H, Okamoto H, Kawasaki M, Tokura Y 2006 Appl. Phys. Lett. 88 123501

    [4]

    Mermer Ö, Veeraraghavan G, Francis T L, Wohlgenannt M 2005 Solid Communications 134 631

    [5]

    Desai P, Shakya P, Kreouzis T, Gillin W P 2007 J. Appl. Phys. 102 073710

    [6]

    Xin L Y, Li C N, Li F, Liu S Y, Hu B 2009 Appl. Phys. Lett. 95 123306

    [7]

    Chen P, Lei Y L, Song Q L, Zhang Y, Liu R, Zhang Q M, Xiong Z H 2009 Appl. Phys. Lett. 95 213304

    [8]

    Chen P, Song Q L, Choy W C H, Ding B F, Liu Y L, Xiong Z H 2011 Appl. Phys. Lett. 99 143305

    [9]

    Li F, Xin L Y, Liu S Y, Hu B 2010 Appl. Phys. Lett. 97 073301

    [10]

    Mermer Ö, Veeraraghavan G, Francis T L, Sheng Y, Nguyen D T, Wohlgenannt M, Köhler A, Al-Suti M K, Khan M S 2005 Phys. Rev. B 72 205202

    [11]

    Xiong Z H, Wu D, Vardney Z V, Shi J 2004 Nature 427 821

    [12]

    Nguyen T D, Sheng Y, Rybicki J, Wohlgenannt M 2008 Phys. Rev. B 77 235209

    [13]

    Hu B, Wu Y 2007 Nature Materials 6 985

    [14]

    Ren J F, Fu J Y, Liu D S, Xie S J 2004 Acta Phys. Sin. 53 3814 (in Chinese) [任俊峰, 付吉永, 刘德胜, 谢士杰 2004 53 3814]

    [15]

    Zhang Q M, Lei Y L, Song Q L, Chen P, Zhang Y, Xiong Z H 2011 Phys. Rev. Lett. 98 243303

    [16]

    Bobbert P A, Nguyen T D, van Oost F W A, Koopmans B, Wohlgenannt M 2007 Phys. Rev. Lett. 99 216801

    [17]

    Zhang Y, Liu R, Leng Z H 2010 Acta Phys. Sin. 59 5817 (in Chinese) [张勇, 刘荣, 雷衍连, 陈平, 张巧明, 熊祖洪 2010 59 5817]

    [18]

    Lei Y L, Liu R, Zhang Y, Tan X W, Xiong Z H 2009 Acta Phys. Sin. 58 1269 (in Chinese) [雷衍连, 刘荣, 张勇, 谭兴文, 熊祖洪 2009 58 1269]

    [19]

    Sheng Y, Nguyen T D, Mermer Ö, Wohlgenannt M, Scherf U 2006 Phys. Rev. B 74 045213

    [20]

    Bloom F L, Wagemans W, Kemerink M, Koopmans B 2007 Phys. Rev. Lett. 99 257201

    [21]

    Frankevich E L, Lymarev A A, Sokolik I, Karasz F E, Blumstengel S, Baughman R H, Hrhold H H 1992 Phys. Rev. B 46 9320

    [22]

    Desai P, Shakya P, Kreouzis T, Gillin W P, Morley N A, Gibbs M R J 2007 Phys. Rev. B 75 094423

    [23]

    Wohlgenannt M, Vardeny Z V 2003 J. Phys. Condens. Matter 15 R83

    [24]

    Ito F, Ikoma T, Akiyama K, Watanabe A, Tero-Kubota S 2005 J. Phys. Chem. 109 8707

    [25]

    Doubleday Jr C, Turro N J, Wang J F 1989 Acc. Chem. Res. 22 199

  • [1] 彭腾, 王辉耀, 赵茜, 刘俊宏, 汪波, 王晶晶, 周银琼, 张可怡, 杨俊, 熊祖洪. 电子注入层迁移率对Rubrene/C60基发光二极管半带隙开启电压的调控.  , 2024, 73(21): 217202. doi: 10.7498/aps.73.20240864
    [2] 任兴, 于宏宇, 张勇. 基于BCPO发光材料近紫外有机发光二极管的电致发光效率与稳定性.  , 2024, 73(4): 047801. doi: 10.7498/aps.73.20231301
    [3] 王辉耀, 魏福贤, 吴雨廷, 彭腾, 刘俊宏, 汪波, 熊祖洪. 激基复合物有机发光二极管中平衡载流子增强电荷转移态的反向系间窜越过程.  , 2023, 72(17): 177201. doi: 10.7498/aps.72.20230949
    [4] 保希, 关云霞, 李万娇, 宋家一, 陈丽佳, 徐爽, 彭柯敖, 牛连斌. 载流子阶梯效应调控有机发光二极管三线态激子的解离和散射.  , 2023, 72(21): 217101. doi: 10.7498/aps.72.20230851
    [5] 陶泽华, 董海明, 段益峰. 太赫兹辐射场下的石墨烯光生载流子和光子发射.  , 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [6] 刘萌娇, 张新稳, 王炯, 秦雅博, 陈月花, 黄维. 非周期微纳结构增强有机发光二极管光耦合输出的研究进展.  , 2018, 67(20): 207801. doi: 10.7498/aps.67.20181209
    [7] 李江江, 高志远, 薛晓玮, 李慧敏, 邓军, 崔碧峰, 邹德恕. 片上制备横向结构ZnO纳米线阵列紫外探测器件.  , 2016, 65(11): 118104. doi: 10.7498/aps.65.118104
    [8] 李高芳, 马国宏, 马红, 初凤红, 崔昊杨, 刘伟景, 宋小军, 江友华, 黄志明, 褚君浩. 光抽运太赫兹探测技术研究ZnSe的光致载流子动力学特性.  , 2016, 65(24): 247201. doi: 10.7498/aps.65.247201
    [9] 张雅男, 王俊锋. 利用发光层梯度掺杂改善顶发射白光有机发光二极管光谱的稳定性.  , 2015, 64(9): 097801. doi: 10.7498/aps.64.097801
    [10] 黄迪, 徐征, 赵谡玲. 使用PTB7作为阳极修饰层提高有机发光二极管的性能.  , 2014, 63(2): 027301. doi: 10.7498/aps.63.027301
    [11] 薛振杰, 李葵英, 孙振平. 核壳结构硒化镉/硫化镉/巯基乙酸量子点载流子输运特性.  , 2013, 62(6): 066801. doi: 10.7498/aps.62.066801
    [12] 刘佰全, 兰林锋, 邹建华, 彭俊彪. 具有新型双空穴注入层的有机发光二极管.  , 2013, 62(8): 087302. doi: 10.7498/aps.62.087302
    [13] 张勇, 刘亚莉, 焦威, 陈林, 熊祖洪. 有机发光器件的磁电导效应.  , 2012, 61(11): 117106. doi: 10.7498/aps.61.117106
    [14] 刘南柳, 艾娜, 胡典钢, 余树福, 彭俊彪, 曹镛, 王坚. 旋涂方式对有机发光显示屏发光均匀性及性能的影响.  , 2011, 60(8): 087805. doi: 10.7498/aps.60.087805
    [15] 杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维. 有机发光二极管光取出技术研究进展.  , 2011, 60(4): 047809. doi: 10.7498/aps.60.047809
    [16] 刘荣, 张勇, 雷衍连, 陈平, 张巧明, 熊祖洪. LiF插层对有机发光二极管磁场效应的调控.  , 2010, 59(6): 4283-4289. doi: 10.7498/aps.59.4283
    [17] 程萍, 高峰, 陈向东, 杨继平. 偏置电场对聚对苯乙烯激发态弛豫特性的影响.  , 2010, 59(4): 2831-2835. doi: 10.7498/aps.59.2831
    [18] 张勇, 刘荣, 雷衍连, 陈平, 张巧明, 熊祖洪. 基于Alq3的有机发光二极管的磁电导效应.  , 2010, 59(8): 5817-5822. doi: 10.7498/aps.59.5817
    [19] 张秀龙, 杨盛谊, 娄志东, 侯延冰. 有机电致发光器件的动态电学特性.  , 2007, 56(3): 1632-1636. doi: 10.7498/aps.56.1632
    [20] 王 军, 魏孝强, 饶海波, 成建波, 蒋亚东. 基于铱配合物材料的高效高稳定性有机发光二极管.  , 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
计量
  • 文章访问数:  7242
  • PDF下载量:  450
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-10
  • 修回日期:  2012-03-11
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map