搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氩离子轰击对四面体非晶碳膜内应力和摩擦系数影响的研究

韩亮 宁涛 刘德连 何亮

引用本文:
Citation:

氩离子轰击对四面体非晶碳膜内应力和摩擦系数影响的研究

韩亮, 宁涛, 刘德连, 何亮

The study on the stress and the friction coefficient of tetrahedral amorphous carbon films bombarded by energetic Ar ion

Han Liang, Ning Tao, Liu De-Lian, He Liang
PDF
导出引用
  • 利用磁过滤真空阴极电弧技术制备了sp3键大于80%的四面体非晶碳(ta-C)薄膜, 通过冷阴极离子源产生keV能量的氩离子轰击ta-C薄膜,研究了氩离子轰击能量对ta-C薄膜结构, 内应力以及耐磨性的影响.通过X射线光电子能谱和原子力显微镜研究了氩离子轰击对薄膜结构 与表面形貌的改性,研究表明,氩离子轰击诱导了ta-C薄膜中sp3键向sp2键的转化, 并且随着氩离子轰击能量的增大,薄膜中sp2键的含量逐渐增多, 薄膜内应力随着氩离子轰击能量的增大逐渐减小.氩离子轰击对薄膜的表面形貌有较大影响, 在薄膜表面形成刻蚀坑,并且改变了薄膜的表面粗糙度,随着氩离子轰击能量的增大, 薄膜的表面粗糙度也会逐渐增大.通过摩擦磨损仪的测试结果,氩离子轰击对薄膜的初始摩擦系数影响较大, 但是对薄膜的稳定摩擦系数影响较小,经过氩离子轰击前后的ta-C薄膜的摩擦系数为0.1左右, 并且具有优异的耐磨性.
    The ta-C films with sp3 bonds more than 80% in fraction are deposited by FCVA technique, and then they are bombarded by Ar ions. The composition and structures of the ta-C films before and after the bombardment of energetic Ar ions are analyzed by X-ray photoelectron spectroscopy. The surface morphology is investigated by AFM. The result shows that the bombardment of Ar ions induces the conversion of sp3 bond into sp2 bond, and the fraction of sp2 bonds increases with the energy of Ar ion increasing. The stress of the film decreases with the increase of the Ar ion energy. The RMS and etching pits on the surface of film increase with the increase of Ar ion bombarding energy.The friction test indicates that Ar ion bombardment has an important influence on initial friction coefficient, but just has little influence on steady state friction coefficient. The steady state friction coefficient of film keeps about 0.1, which shows a good antiwear property.
    • 基金项目: 中央高校基本科研业务费专项资金和 国家自然科学基金(批准号: 61106062)资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, and the National Natural Science Foundation of China (Grant No. 61106062).
    [1]

    Ander A, ander S, Brown I G, Plasma 1995 Source Sci. Technol. 4 1

    [2]

    Zhu J Q, Wang J H, Meng S H, Han J C, Zhang L S 2004 Acta Phys. Sin. 53 1151 (in Chinese) [朱嘉琦, 王景贺, 孟松鹤, 韩杰才, 张连升 2004 53 1151]

    [3]

    Liang F, Yan X J 1999 Acta Phys. Sin. 48 1095 (in Chinese) [梁风, 严学俭 1999 48 1095]

    [4]

    Stéphane Neuville 2011 Surf. Coat. Technol. 206 703

    [5]

    Kim K S, Seung H L, Yoo C K, Seung C L, Pil R C, Kwang R L 2008 Metal. Mater. Inter. 14 347

    [6]

    Kim T Y, Lee C S, Lee Y J, Lee K R, Chae K H, Oh K H 2007 J. Appl. Phys. 101 023504

    [7]

    Ferrari A C, Klensorge B, Morrison N A, Hart A, Stolojan V, Robertson J 1999 J. Appl. Phys. 85 7191

    [8]

    Zhang P, Tay B K, Yu G Q, Lau S P, Fun Y Q 2004 Diamond Relat. Mater. 13 459

    [9]

    Guo J X, Tay B K, Sun X W, Ding X Z, Chua D H C 2003 Surf. Coat. Technol. 169-170 393

    [10]

    Onoprienko A A, Danilenko N I, Kossko I A, Gorban V F 2008 Surf. Coat. Technol. 202 1728

    [11]

    Zhang X W, Ke N, Cheung W Y, Wong S P 2003 Diamond Relat. Mater. 12 1

    [12]

    Panwar O S, Alim K M, Kumar S, Basu A, Mehta B R, Kumar S, Ishpal I 2010 Surf. Coat. Technol. 205 2126

    [13]

    Ding X Z, Tay B K, Lau S P, Zheng P, Zeng X P 2002 Thin Solid Films 408 183

    [14]

    Shi J R, Sun Z, Shi X 2000 Thin Solid Films 377 269

    [15]

    Han L, Chen X, Yang L, Wang Y W, Wang X Y, Zhao Y Q 2011 Acta Phys. Sin. 60 066804 (in Chinese) [韩亮, 陈仙, 杨立, 王炎武, 王晓艳, 赵玉清 2011 60 066804]

    [16]

    Shi X, Tay B K, Tan H S, Zhong L, Tu Y Q, Silva S R P, Miline W I 1996 J. Appl. Phys. 79 7239

    [17]

    Yu G H, Zeng L R, Zhu F W, Chai C L, Lai W Y 2001 J. Appl. Phys. 90 4039

    [18]

    Zhu J Q, Han J C, Han X, H Schiaberg inaki, Wang J Z 2008 J. Appl. Phys. 104 013512

    [19]

    Yu G H, Zeng L R, Zhu F W, Chai C L, Lai W Y 2001 J. Appl. Phys. 90 4039

    [20]

    Me'rel P, Tabbal M, Chaker M, Moisa S, Margot J 1998 Appl. Surf. Sci. 136 105

    [21]

    Hofsäss H, Eldermann H F, Merk R, Sebastian M, Ronning C 1998 J. Appl. Phys. A 66 153

    [22]

    Robertson J 2002 Mater. Sc. Eng. R 34 129

    [23]

    Broitman E, Hellgren N, Wänstrand O, Johansson M P, Berlind T Sjöström H, Sundgren J E, Larsson M, Hultman L 2001 Wear 248 55

    [24]

    Gupta B K, Malshe A, Bhushan B, Subramaniam V V 1994 J. Tribol. 116 445

    [25]

    Donnet C, Grill A 1997 Surf. Coat. Technol. 94-95 456

  • [1]

    Ander A, ander S, Brown I G, Plasma 1995 Source Sci. Technol. 4 1

    [2]

    Zhu J Q, Wang J H, Meng S H, Han J C, Zhang L S 2004 Acta Phys. Sin. 53 1151 (in Chinese) [朱嘉琦, 王景贺, 孟松鹤, 韩杰才, 张连升 2004 53 1151]

    [3]

    Liang F, Yan X J 1999 Acta Phys. Sin. 48 1095 (in Chinese) [梁风, 严学俭 1999 48 1095]

    [4]

    Stéphane Neuville 2011 Surf. Coat. Technol. 206 703

    [5]

    Kim K S, Seung H L, Yoo C K, Seung C L, Pil R C, Kwang R L 2008 Metal. Mater. Inter. 14 347

    [6]

    Kim T Y, Lee C S, Lee Y J, Lee K R, Chae K H, Oh K H 2007 J. Appl. Phys. 101 023504

    [7]

    Ferrari A C, Klensorge B, Morrison N A, Hart A, Stolojan V, Robertson J 1999 J. Appl. Phys. 85 7191

    [8]

    Zhang P, Tay B K, Yu G Q, Lau S P, Fun Y Q 2004 Diamond Relat. Mater. 13 459

    [9]

    Guo J X, Tay B K, Sun X W, Ding X Z, Chua D H C 2003 Surf. Coat. Technol. 169-170 393

    [10]

    Onoprienko A A, Danilenko N I, Kossko I A, Gorban V F 2008 Surf. Coat. Technol. 202 1728

    [11]

    Zhang X W, Ke N, Cheung W Y, Wong S P 2003 Diamond Relat. Mater. 12 1

    [12]

    Panwar O S, Alim K M, Kumar S, Basu A, Mehta B R, Kumar S, Ishpal I 2010 Surf. Coat. Technol. 205 2126

    [13]

    Ding X Z, Tay B K, Lau S P, Zheng P, Zeng X P 2002 Thin Solid Films 408 183

    [14]

    Shi J R, Sun Z, Shi X 2000 Thin Solid Films 377 269

    [15]

    Han L, Chen X, Yang L, Wang Y W, Wang X Y, Zhao Y Q 2011 Acta Phys. Sin. 60 066804 (in Chinese) [韩亮, 陈仙, 杨立, 王炎武, 王晓艳, 赵玉清 2011 60 066804]

    [16]

    Shi X, Tay B K, Tan H S, Zhong L, Tu Y Q, Silva S R P, Miline W I 1996 J. Appl. Phys. 79 7239

    [17]

    Yu G H, Zeng L R, Zhu F W, Chai C L, Lai W Y 2001 J. Appl. Phys. 90 4039

    [18]

    Zhu J Q, Han J C, Han X, H Schiaberg inaki, Wang J Z 2008 J. Appl. Phys. 104 013512

    [19]

    Yu G H, Zeng L R, Zhu F W, Chai C L, Lai W Y 2001 J. Appl. Phys. 90 4039

    [20]

    Me'rel P, Tabbal M, Chaker M, Moisa S, Margot J 1998 Appl. Surf. Sci. 136 105

    [21]

    Hofsäss H, Eldermann H F, Merk R, Sebastian M, Ronning C 1998 J. Appl. Phys. A 66 153

    [22]

    Robertson J 2002 Mater. Sc. Eng. R 34 129

    [23]

    Broitman E, Hellgren N, Wänstrand O, Johansson M P, Berlind T Sjöström H, Sundgren J E, Larsson M, Hultman L 2001 Wear 248 55

    [24]

    Gupta B K, Malshe A, Bhushan B, Subramaniam V V 1994 J. Tribol. 116 445

    [25]

    Donnet C, Grill A 1997 Surf. Coat. Technol. 94-95 456

  • [1] 崔子纯, 杨莫涵, 阮晓鹏, 范晓丽, 周峰, 刘维民. 高通量计算二维材料界面摩擦.  , 2023, 72(2): 026801. doi: 10.7498/aps.72.20221676
    [2] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构.  , 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [3] 杨蒙生, 易泰民, 郑凤成, 唐永建, 张林, 杜凯, 李宁, 赵利平, 柯博, 邢丕峰. 沉积态铀薄膜表面氧化的X射线光电子能谱.  , 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [4] 安书董, 王晓燕, 陈仙, 王炎武, 王晓波, 赵玉清. 基底表面纳米织构对非晶四面体碳膜结构和摩擦特性的影响研究.  , 2015, 64(3): 036801. doi: 10.7498/aps.64.036801
    [5] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱.  , 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [6] 赵鹤玲, 夏海平, 罗彩香, 徐军. 掺Bi离子锗铌酸盐红外发光玻璃的研究.  , 2012, 61(8): 086102. doi: 10.7498/aps.61.086102
    [7] 韩亮, 邵鸿翔, 何亮, 陈仙, 赵玉清. 氮离子轰击能量对ta-C:N薄膜结构的影响.  , 2012, 61(10): 106803. doi: 10.7498/aps.61.106803
    [8] 张旺, 徐法强, 王国栋, 张文华, 李宗木, 王立武, 陈铁锌. Fe/ZnO (0001)体系界面相互作用中薄膜厚度效应的光电子能谱研究.  , 2011, 60(1): 017104. doi: 10.7498/aps.60.017104
    [9] 韩亮, 杨立, 杨拉毛草, 王炎武, 赵玉清. 磁过滤器电流对非晶碳薄膜摩擦学特性影响的研究.  , 2011, 60(4): 046802. doi: 10.7498/aps.60.046802
    [10] 韩亮, 陈仙, 杨立, 王炎武, 王晓艳, 赵玉清. 高能氮离子轰击对四面体非晶碳膜的表面改性和摩擦系数影响的研究.  , 2011, 60(6): 066804. doi: 10.7498/aps.60.066804
    [11] 韩录会, 张崇宏, 张丽卿, 杨义涛, 宋银, 孙友梅. 低速高电荷态重离子辐照的GaN晶体表面X射线光电子能谱研究.  , 2010, 59(7): 4584-4590. doi: 10.7498/aps.59.4584
    [12] 李永华, 刘常升, 孟繁玲, 王煜明, 郑伟涛. NiTi合金薄膜厚度对相变温度影响的X射线光电子能谱分析.  , 2009, 58(4): 2742-2745. doi: 10.7498/aps.58.2742
    [13] 何丽静, 林晓娉, 王铁宝, 刘春阳. 单晶Si表面离子束溅射沉积Co纳米薄膜的研究.  , 2007, 56(12): 7158-7164. doi: 10.7498/aps.56.7158
    [14] 王晓雄, 李宏年. Sm富勒烯的芯态光电子能谱.  , 2006, 55(8): 4259-4264. doi: 10.7498/aps.55.4259
    [15] 彭德全, 白新德, 潘 峰, 孙 辉. 纯锆上离子注入钇和镧后的表面分析.  , 2005, 54(12): 5914-5919. doi: 10.7498/aps.54.5914
    [16] 欧谷平, 宋 珍, 桂文明, 张福甲. 原子力显微镜与x射线光电子能谱对LiBq4/ITO和LiBq4/CuPc/ITO的表面分析.  , 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [17] 冯玉清, 赵 昆, 朱 涛, 詹文山. 磁性隧道结热稳定性的x射线光电子能谱研究.  , 2005, 54(11): 5372-5376. doi: 10.7498/aps.54.5372
    [18] 崔玉亭, 柳祝红, 王文洪, 张 铭, 陈京兰, 王万录, 吴光恒, 孟凡斌, 曲静萍, 李养贤. Ni52Mn24Ga24单晶中取向内应力的热动力学计算.  , 2003, 52(7): 1726-1731. doi: 10.7498/aps.52.1726
    [19] 李刘合, 张海泉, 崔旭明, 张彦华, 夏立芳, 马欣新, 孙跃. X射线光电子能谱辅助Raman光谱分析类金刚石碳膜的结构细节.  , 2001, 50(8): 1549-1554. doi: 10.7498/aps.50.1549
    [20] 苑进社, 陈光德, 齐鸣, 李爱珍, 徐卓. 分子束外延GaN薄膜的X射线光电子能谱和俄歇电子能谱研究.  , 2001, 50(12): 2429-2433. doi: 10.7498/aps.50.2429
计量
  • 文章访问数:  7029
  • PDF下载量:  350
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-27
  • 修回日期:  2012-02-27
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map