-
利用磁过滤真空阴极电弧技术制备了sp3键大于80%的四面体非晶碳(ta-C)薄膜, 通过冷阴极离子源产生keV能量的氩离子轰击ta-C薄膜,研究了氩离子轰击能量对ta-C薄膜结构, 内应力以及耐磨性的影响.通过X射线光电子能谱和原子力显微镜研究了氩离子轰击对薄膜结构 与表面形貌的改性,研究表明,氩离子轰击诱导了ta-C薄膜中sp3键向sp2键的转化, 并且随着氩离子轰击能量的增大,薄膜中sp2键的含量逐渐增多, 薄膜内应力随着氩离子轰击能量的增大逐渐减小.氩离子轰击对薄膜的表面形貌有较大影响, 在薄膜表面形成刻蚀坑,并且改变了薄膜的表面粗糙度,随着氩离子轰击能量的增大, 薄膜的表面粗糙度也会逐渐增大.通过摩擦磨损仪的测试结果,氩离子轰击对薄膜的初始摩擦系数影响较大, 但是对薄膜的稳定摩擦系数影响较小,经过氩离子轰击前后的ta-C薄膜的摩擦系数为0.1左右, 并且具有优异的耐磨性.The ta-C films with sp3 bonds more than 80% in fraction are deposited by FCVA technique, and then they are bombarded by Ar ions. The composition and structures of the ta-C films before and after the bombardment of energetic Ar ions are analyzed by X-ray photoelectron spectroscopy. The surface morphology is investigated by AFM. The result shows that the bombardment of Ar ions induces the conversion of sp3 bond into sp2 bond, and the fraction of sp2 bonds increases with the energy of Ar ion increasing. The stress of the film decreases with the increase of the Ar ion energy. The RMS and etching pits on the surface of film increase with the increase of Ar ion bombarding energy.The friction test indicates that Ar ion bombardment has an important influence on initial friction coefficient, but just has little influence on steady state friction coefficient. The steady state friction coefficient of film keeps about 0.1, which shows a good antiwear property.
-
Keywords:
- Ar ion bomdardment /
- X-ray photoelectron spectroscopy /
- stress /
- friction coefficient
[1] Ander A, ander S, Brown I G, Plasma 1995 Source Sci. Technol. 4 1
[2] Zhu J Q, Wang J H, Meng S H, Han J C, Zhang L S 2004 Acta Phys. Sin. 53 1151 (in Chinese) [朱嘉琦, 王景贺, 孟松鹤, 韩杰才, 张连升 2004 53 1151]
[3] Liang F, Yan X J 1999 Acta Phys. Sin. 48 1095 (in Chinese) [梁风, 严学俭 1999 48 1095]
[4] Stéphane Neuville 2011 Surf. Coat. Technol. 206 703
[5] Kim K S, Seung H L, Yoo C K, Seung C L, Pil R C, Kwang R L 2008 Metal. Mater. Inter. 14 347
[6] Kim T Y, Lee C S, Lee Y J, Lee K R, Chae K H, Oh K H 2007 J. Appl. Phys. 101 023504
[7] Ferrari A C, Klensorge B, Morrison N A, Hart A, Stolojan V, Robertson J 1999 J. Appl. Phys. 85 7191
[8] Zhang P, Tay B K, Yu G Q, Lau S P, Fun Y Q 2004 Diamond Relat. Mater. 13 459
[9] Guo J X, Tay B K, Sun X W, Ding X Z, Chua D H C 2003 Surf. Coat. Technol. 169-170 393
[10] Onoprienko A A, Danilenko N I, Kossko I A, Gorban V F 2008 Surf. Coat. Technol. 202 1728
[11] Zhang X W, Ke N, Cheung W Y, Wong S P 2003 Diamond Relat. Mater. 12 1
[12] Panwar O S, Alim K M, Kumar S, Basu A, Mehta B R, Kumar S, Ishpal I 2010 Surf. Coat. Technol. 205 2126
[13] Ding X Z, Tay B K, Lau S P, Zheng P, Zeng X P 2002 Thin Solid Films 408 183
[14] Shi J R, Sun Z, Shi X 2000 Thin Solid Films 377 269
[15] Han L, Chen X, Yang L, Wang Y W, Wang X Y, Zhao Y Q 2011 Acta Phys. Sin. 60 066804 (in Chinese) [韩亮, 陈仙, 杨立, 王炎武, 王晓艳, 赵玉清 2011 60 066804]
[16] Shi X, Tay B K, Tan H S, Zhong L, Tu Y Q, Silva S R P, Miline W I 1996 J. Appl. Phys. 79 7239
[17] Yu G H, Zeng L R, Zhu F W, Chai C L, Lai W Y 2001 J. Appl. Phys. 90 4039
[18] Zhu J Q, Han J C, Han X, H Schiaberg inaki, Wang J Z 2008 J. Appl. Phys. 104 013512
[19] Yu G H, Zeng L R, Zhu F W, Chai C L, Lai W Y 2001 J. Appl. Phys. 90 4039
[20] Me'rel P, Tabbal M, Chaker M, Moisa S, Margot J 1998 Appl. Surf. Sci. 136 105
[21] Hofsäss H, Eldermann H F, Merk R, Sebastian M, Ronning C 1998 J. Appl. Phys. A 66 153
[22] Robertson J 2002 Mater. Sc. Eng. R 34 129
[23] Broitman E, Hellgren N, Wänstrand O, Johansson M P, Berlind T Sjöström H, Sundgren J E, Larsson M, Hultman L 2001 Wear 248 55
[24] Gupta B K, Malshe A, Bhushan B, Subramaniam V V 1994 J. Tribol. 116 445
[25] Donnet C, Grill A 1997 Surf. Coat. Technol. 94-95 456
-
[1] Ander A, ander S, Brown I G, Plasma 1995 Source Sci. Technol. 4 1
[2] Zhu J Q, Wang J H, Meng S H, Han J C, Zhang L S 2004 Acta Phys. Sin. 53 1151 (in Chinese) [朱嘉琦, 王景贺, 孟松鹤, 韩杰才, 张连升 2004 53 1151]
[3] Liang F, Yan X J 1999 Acta Phys. Sin. 48 1095 (in Chinese) [梁风, 严学俭 1999 48 1095]
[4] Stéphane Neuville 2011 Surf. Coat. Technol. 206 703
[5] Kim K S, Seung H L, Yoo C K, Seung C L, Pil R C, Kwang R L 2008 Metal. Mater. Inter. 14 347
[6] Kim T Y, Lee C S, Lee Y J, Lee K R, Chae K H, Oh K H 2007 J. Appl. Phys. 101 023504
[7] Ferrari A C, Klensorge B, Morrison N A, Hart A, Stolojan V, Robertson J 1999 J. Appl. Phys. 85 7191
[8] Zhang P, Tay B K, Yu G Q, Lau S P, Fun Y Q 2004 Diamond Relat. Mater. 13 459
[9] Guo J X, Tay B K, Sun X W, Ding X Z, Chua D H C 2003 Surf. Coat. Technol. 169-170 393
[10] Onoprienko A A, Danilenko N I, Kossko I A, Gorban V F 2008 Surf. Coat. Technol. 202 1728
[11] Zhang X W, Ke N, Cheung W Y, Wong S P 2003 Diamond Relat. Mater. 12 1
[12] Panwar O S, Alim K M, Kumar S, Basu A, Mehta B R, Kumar S, Ishpal I 2010 Surf. Coat. Technol. 205 2126
[13] Ding X Z, Tay B K, Lau S P, Zheng P, Zeng X P 2002 Thin Solid Films 408 183
[14] Shi J R, Sun Z, Shi X 2000 Thin Solid Films 377 269
[15] Han L, Chen X, Yang L, Wang Y W, Wang X Y, Zhao Y Q 2011 Acta Phys. Sin. 60 066804 (in Chinese) [韩亮, 陈仙, 杨立, 王炎武, 王晓艳, 赵玉清 2011 60 066804]
[16] Shi X, Tay B K, Tan H S, Zhong L, Tu Y Q, Silva S R P, Miline W I 1996 J. Appl. Phys. 79 7239
[17] Yu G H, Zeng L R, Zhu F W, Chai C L, Lai W Y 2001 J. Appl. Phys. 90 4039
[18] Zhu J Q, Han J C, Han X, H Schiaberg inaki, Wang J Z 2008 J. Appl. Phys. 104 013512
[19] Yu G H, Zeng L R, Zhu F W, Chai C L, Lai W Y 2001 J. Appl. Phys. 90 4039
[20] Me'rel P, Tabbal M, Chaker M, Moisa S, Margot J 1998 Appl. Surf. Sci. 136 105
[21] Hofsäss H, Eldermann H F, Merk R, Sebastian M, Ronning C 1998 J. Appl. Phys. A 66 153
[22] Robertson J 2002 Mater. Sc. Eng. R 34 129
[23] Broitman E, Hellgren N, Wänstrand O, Johansson M P, Berlind T Sjöström H, Sundgren J E, Larsson M, Hultman L 2001 Wear 248 55
[24] Gupta B K, Malshe A, Bhushan B, Subramaniam V V 1994 J. Tribol. 116 445
[25] Donnet C, Grill A 1997 Surf. Coat. Technol. 94-95 456
计量
- 文章访问数: 7029
- PDF下载量: 350
- 被引次数: 0