搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺Bi离子锗铌酸盐红外发光玻璃的研究

赵鹤玲 夏海平 罗彩香 徐军

引用本文:
Citation:

掺Bi离子锗铌酸盐红外发光玻璃的研究

赵鹤玲, 夏海平, 罗彩香, 徐军

Bi-doped germanium niobate glasses with near-infrared broad-band emission

Zhao He-Ling, Xia Hai-Ping, Luo Cai-Xiang, Xu Jun
PDF
导出引用
  • 用高温熔融法制备了Bi2O3掺杂的(0.9-x) GeO2-xNb2O5-0.1BaO (含量x为摩尔分数, x=0, 0.04, 0.07, 0.1)系列玻璃. 测定了玻璃样品的差热分析(DTA)曲线、吸收光谱、发射光谱及X射线光电子能谱(XPS). 从DTA曲线分析得到玻璃的结晶起始温度与软化温度之差(Tx-Tg)达200℃以上. 吸收光谱中可观察到位于500, 700, 808和1000 nm处的吸收峰, 并随着Nb2O5含量x的增加吸收边带发生红移. 在波长为808 nm激光激发下, 观察到发光中心位于1300 nm处、荧光光谱半高宽约为200 nm的宽带发光. 荧光强度随Bi2O3掺杂量的增加先增强后减弱, 当掺杂量达到约0.01时, 荧光强度达到最强. 随着Nb2O5含量x从0.04增加到0.1时, 荧光强度逐步减弱. 样品的XPS峰分别位于159.6和164.7 eV, 它们介于Bi3+与Bi5+的特征结合能之间, 因此Bi3+与Bi5+可能同时存在于玻璃基质中. 从XPS及Bi离子的发光特性推断, 宽带的荧光发射可能起因于Bi5+. 随着Nb2O5含量x的增加, 荧光强度逐步减弱. 分析认为, Nb2O5取代GeO2后形成了NbGe缺陷, 需要低价Bi离子进行电子补偿, 因而抑制了Bi5+形成, 致使荧光强度减弱.
    The Bi2O3 doped glasses with concentrations of (0.9-x) GeO2-xNb2O5-0.1BaO (x=0.04, 0.07, 0.1) glasses are prepared by the conventional melting method. The differential thermal analysis (DTA) curves, the absorption spectra, the fluorescence decay curve and the X-ray photoelectron spectra are measured. The difference between glass crystallization onset temperature and transition temperature (Tx-Tg) of the glasses is up to 200℃ from the DTA curve. Absorption peaks at 500, 700, and 1000 nm are observed. The absorption edges show a red-shift with the increase of Nb2O5 content x. The emission band at 1300 nm with the full width at half maximum near 200 nm is observed under the excitation of 808 nm laser. The fluorescence intensity increases with the increase of the concentration of Bi2O3. The fluorescence intensity reaches a maximal value when the concentration of Bi2O3 is about 0.01. The peaks of binding energy in XPS are located at 159.6 and 164.7 eV respectively. The binding energy peaks are located between those of Bi3+ and Bi5+ by comparing with those of Bi2O3 (Bi3+) and NaBiO3 (Bi5+). According to the XPS results, one may conclude that Bi3+ and Bi5+ ions co-exist in the glass. The near infrared broadband emission may be assigned to Bi5+ ion based on the results of emission spectra and X-ray photoelectron spectra. The broadband intensity is gradually weakened as the Nb2O5 content x increases from 0.04 to 0.1. As GeO2 is substituted by Nb2O5, complex NbGe defects are formed and the lower valence state of Bi ions will be inevitably formed to compensate the extra electric charge from Nb5+, thus resulting in the inhibition of Bi5+ and weakening the fluorescence aforementioned.
    • 基金项目: 国家自然科学基金(批准号: 50972061)、浙江省自然科学基金(批准号: R4100364)、宁波市自然科学基金(批准号: 2009A610007)和宁波大学王宽诚幸福基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50972061), the Natural Science Foundation of Zhejiang Province, China (Grant No. R4100364), the Natural Science Foundation of Ningbo, China (Grant No. 2009A610007), and the K. C. Wong Magna Foundation of Ningbo University, China.
    [1]

    Zhou S F 2007 Appl. Phys. Lett. 91 061919

    [2]

    Qiu J R, Peng M Y, Ren J J, Meng X G, Jiang X W, Zhu C S 2008 J. Non-Cryst. Solids 354 1235

    [3]

    Chi G W, Zhou D C, Song Z G, Qiu J B 2009 Opt. Mater. 31 945

    [4]

    Peng M Y, Wu B T, Da N, Wang C, Chen D P, Qiu J R 2008 J. Non-Cryst. Solids 354 122

    [5]

    Blasse G, Brill A 1997 J. Chem. Phys. 47 1920

    [6]

    Srivastava M A 1998 J. Lumin. 78 239

    [7]

    Blasse G, Brill A 1968 J. Chem. Phys. 48 217

    [8]

    Dong W, Zhu C 2003 J. Phys. Chem. Solids 64 265

    [9]

    Murata T, Mour T 2007 J. Non-Cryst. Solids 353 2403

    [10]

    Fujimoto Y, Nakatsuka M 2001 Jpn. J. Appl. Phys. 40 L279

    [11]

    Yu C, Xia H P, Luo C X, Hu Y, Chen H B, Xu J 2010 Chin. J. Lasers 37 2610 (in Chinese) [虞灿, 夏海平, 罗彩香, 胡元, 陈红兵, 徐军 2010 中国激光 37 2610]

    [12]

    Fujimoto Y, Nakatsuka M 2003 Appl. Phys. Lett. 82 3325

    [13]

    Wang X J, Xia H P 2006 Acta Phys. Sin. 55 5263 (in Chinese) [王雪俊, 夏海平 2006 55 5263]

    [14]

    Xu J, Ma X S, Gu J, Sheng Y F, Zhang X M 1990 J. Synth. Cryst. 19 283 (in Chinese) [徐军, 马笑山, 顾及, 沈雅芳, 张新民 1990 人工晶体学报 19 283]

    [15]

    Duffy J A 1996 J. Non-Cryst. Solids 196 45

    [16]

    Fujimoto Y 2010 J. Am. Ceram. Soc. 93 581

    [17]

    Wang Y L, Dai S X, Xu T F, Nie Q H, Sheng X, Wang X S 2008 Acta Photon. Sin. 37 89 (in Chinese) [王艳玲, 戴世勋, 徐铁峰, 聂秋华, 沈祥, 王训四 2008 光子学报 37 89]

    [18]

    Peng M Y, Qiu J R, Chen D, Meng X G, Yang I, Jiang X W, Zhu C 2004 Opt. Lett. 29 1998

    [19]

    Xu T F, Zhang X D, Nie Q H, Dai S X, Seng X, Liang X W, Zhang X H 2006 J. Rare Metals 30 6 (in Chinese) [徐铁峰, 张旭东, 聂秋华, 戴世勋, 沈祥, 梁晓炜, 章向华 2006 稀有金属 30 6]

    [20]

    Jiang X, Animesh J 2010 Opt. Mater. 33 14

    [21]

    Yang J H, Dai S X, Wen L, Liu Z P, Hu L L, Jiang Z H 2003 Acta Phys. Sin. 52 508 (in Chinese) [杨建虎, 戴世勋, 温磊, 柳祝平, 胡丽丽, 姜中宏 2003 52 508]

    [22]

    Wagner C D 1990 Auger and X-Ray Photoelectron Spectroscopy (2nd ed) (New York: John Wiley) Vol 1

    [23]

    Blasse G, Meijierink A, Nomes M, Zuidema J 1994 J. Phys. Chem. Solids 55 171

  • [1]

    Zhou S F 2007 Appl. Phys. Lett. 91 061919

    [2]

    Qiu J R, Peng M Y, Ren J J, Meng X G, Jiang X W, Zhu C S 2008 J. Non-Cryst. Solids 354 1235

    [3]

    Chi G W, Zhou D C, Song Z G, Qiu J B 2009 Opt. Mater. 31 945

    [4]

    Peng M Y, Wu B T, Da N, Wang C, Chen D P, Qiu J R 2008 J. Non-Cryst. Solids 354 122

    [5]

    Blasse G, Brill A 1997 J. Chem. Phys. 47 1920

    [6]

    Srivastava M A 1998 J. Lumin. 78 239

    [7]

    Blasse G, Brill A 1968 J. Chem. Phys. 48 217

    [8]

    Dong W, Zhu C 2003 J. Phys. Chem. Solids 64 265

    [9]

    Murata T, Mour T 2007 J. Non-Cryst. Solids 353 2403

    [10]

    Fujimoto Y, Nakatsuka M 2001 Jpn. J. Appl. Phys. 40 L279

    [11]

    Yu C, Xia H P, Luo C X, Hu Y, Chen H B, Xu J 2010 Chin. J. Lasers 37 2610 (in Chinese) [虞灿, 夏海平, 罗彩香, 胡元, 陈红兵, 徐军 2010 中国激光 37 2610]

    [12]

    Fujimoto Y, Nakatsuka M 2003 Appl. Phys. Lett. 82 3325

    [13]

    Wang X J, Xia H P 2006 Acta Phys. Sin. 55 5263 (in Chinese) [王雪俊, 夏海平 2006 55 5263]

    [14]

    Xu J, Ma X S, Gu J, Sheng Y F, Zhang X M 1990 J. Synth. Cryst. 19 283 (in Chinese) [徐军, 马笑山, 顾及, 沈雅芳, 张新民 1990 人工晶体学报 19 283]

    [15]

    Duffy J A 1996 J. Non-Cryst. Solids 196 45

    [16]

    Fujimoto Y 2010 J. Am. Ceram. Soc. 93 581

    [17]

    Wang Y L, Dai S X, Xu T F, Nie Q H, Sheng X, Wang X S 2008 Acta Photon. Sin. 37 89 (in Chinese) [王艳玲, 戴世勋, 徐铁峰, 聂秋华, 沈祥, 王训四 2008 光子学报 37 89]

    [18]

    Peng M Y, Qiu J R, Chen D, Meng X G, Yang I, Jiang X W, Zhu C 2004 Opt. Lett. 29 1998

    [19]

    Xu T F, Zhang X D, Nie Q H, Dai S X, Seng X, Liang X W, Zhang X H 2006 J. Rare Metals 30 6 (in Chinese) [徐铁峰, 张旭东, 聂秋华, 戴世勋, 沈祥, 梁晓炜, 章向华 2006 稀有金属 30 6]

    [20]

    Jiang X, Animesh J 2010 Opt. Mater. 33 14

    [21]

    Yang J H, Dai S X, Wen L, Liu Z P, Hu L L, Jiang Z H 2003 Acta Phys. Sin. 52 508 (in Chinese) [杨建虎, 戴世勋, 温磊, 柳祝平, 胡丽丽, 姜中宏 2003 52 508]

    [22]

    Wagner C D 1990 Auger and X-Ray Photoelectron Spectroscopy (2nd ed) (New York: John Wiley) Vol 1

    [23]

    Blasse G, Meijierink A, Nomes M, Zuidema J 1994 J. Phys. Chem. Solids 55 171

  • [1] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构.  , 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [2] 杨蒙生, 易泰民, 郑凤成, 唐永建, 张林, 杜凯, 李宁, 赵利平, 柯博, 邢丕峰. 沉积态铀薄膜表面氧化的X射线光电子能谱.  , 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [3] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱.  , 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [4] 张来斌, 任廷琦. 扩环荧光碱基类似物x-腺嘌呤分子基态和激发态性质的理论研究.  , 2013, 62(10): 107102. doi: 10.7498/aps.62.107102
    [5] 刘军芳, 苏良碧, 徐军. Bi2O3-B2O3-BaO玻璃的制备及其近红外发光性能的研究.  , 2013, 62(3): 037804. doi: 10.7498/aps.62.037804
    [6] 郭凯敏, 高 勋, 郝作强, 鲁毅, 孙长凯, 林景全. 空气中飞秒激光等离子体荧光辐射光谱研究.  , 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [7] 刘军芳, 苏良碧, 唐慧丽, 徐军. 掺铋离子BaO-B2O3玻璃的制备及其近红外发光性能的研究.  , 2012, 61(12): 127806. doi: 10.7498/aps.61.127806
    [8] 张旺, 徐法强, 王国栋, 张文华, 李宗木, 王立武, 陈铁锌. Fe/ZnO (0001)体系界面相互作用中薄膜厚度效应的光电子能谱研究.  , 2011, 60(1): 017104. doi: 10.7498/aps.60.017104
    [9] 罗彩香, 夏海平, 虞灿, 徐军. 掺Bi钨酸镉单晶体发光特性的研究.  , 2011, 60(7): 077806. doi: 10.7498/aps.60.077806
    [10] 韩录会, 张崇宏, 张丽卿, 杨义涛, 宋银, 孙友梅. 低速高电荷态重离子辐照的GaN晶体表面X射线光电子能谱研究.  , 2010, 59(7): 4584-4590. doi: 10.7498/aps.59.4584
    [11] 李永华, 刘常升, 孟繁玲, 王煜明, 郑伟涛. NiTi合金薄膜厚度对相变温度影响的X射线光电子能谱分析.  , 2009, 58(4): 2742-2745. doi: 10.7498/aps.58.2742
    [12] 吕景文, 刘 双, 肖洪亮, 郑笑秋, 李 岳, 李 峰. Cr3+/Tm3+/Ho3+共掺氟磷酸盐玻璃的制备及性能表征.  , 2008, 57(10): 6373-6380. doi: 10.7498/aps.57.6373
    [13] 王雪俊, 夏海平. GeO2-Bi2O3-MOx(MOx=WO3, BaO)玻璃近红外超宽带发光的研究.  , 2007, 56(5): 2725-2730. doi: 10.7498/aps.56.2725
    [14] 王晓雄, 李宏年. Sm富勒烯的芯态光电子能谱.  , 2006, 55(8): 4259-4264. doi: 10.7498/aps.55.4259
    [15] 刘 莹, 彭长德, 兰秀风, 骆晓森, 沈中华, 陆 建, 倪晓武. 乙醇和水分子形成配合物与荧光光谱特性研究.  , 2005, 54(11): 5455-5461. doi: 10.7498/aps.54.5455
    [16] 欧谷平, 宋 珍, 桂文明, 张福甲. 原子力显微镜与x射线光电子能谱对LiBq4/ITO和LiBq4/CuPc/ITO的表面分析.  , 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [17] 冯玉清, 赵 昆, 朱 涛, 詹文山. 磁性隧道结热稳定性的x射线光电子能谱研究.  , 2005, 54(11): 5372-5376. doi: 10.7498/aps.54.5372
    [18] 戴世勋, 杨建虎, 戴能利, 徐时清, 温 磊, 胡丽丽, 姜中宏. 荧光捕获效应对Yb3+磷酸盐玻璃光谱性质的影响.  , 2003, 52(6): 1533-1539. doi: 10.7498/aps.52.1533
    [19] 苑进社, 陈光德, 齐鸣, 李爱珍, 徐卓. 分子束外延GaN薄膜的X射线光电子能谱和俄歇电子能谱研究.  , 2001, 50(12): 2429-2433. doi: 10.7498/aps.50.2429
    [20] 李刘合, 张海泉, 崔旭明, 张彦华, 夏立芳, 马欣新, 孙跃. X射线光电子能谱辅助Raman光谱分析类金刚石碳膜的结构细节.  , 2001, 50(8): 1549-1554. doi: 10.7498/aps.50.1549
计量
  • 文章访问数:  8157
  • PDF下载量:  804
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-22
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

/

返回文章
返回
Baidu
map