-
随着能源危机的加剧,太阳能电池作为开发和利用太阳能的一种普遍形式, 日益受到世界各国的重视.随着太阳能电池向着高效率、薄膜化、无毒性和原材料丰富的方向发展, 单纯的硅系太阳能电池已经无法达到这样的要求,因此新的材料和工艺的开发利用迫在眉睫. 本文研究了碳材料在硅异质节上实现光伏效应的改善及其可能在太阳能电池上的应用. 采用脉冲激光沉积方法制备的Co2-C98/Al2O3/Si异质结构在标准日光照射 (AM1.5, 100 mW/cm2)条件下,可获得0.447 V的开路电压和18.75 mA/cm2的电流密度, 转换效率可达3.27%.通过电容电压特性和暗条件下的电输运性能测量, 证明了氧化铝层的引入不但对单晶硅的表面起到了物理钝化作用,减小了反向漏电流, 使异质结界面缺陷、界面能级和复合中心减少,还起到了场效应钝化作用, 增加了异质结界面的势垒高度,增加了开路电压,使异质结的光伏效应显著增强.As energy crisis is aggravated, solar cell, as a common form of the development and utilization of solar energy, has attracted more and more attention all over the world. With solar cells developing towards the direction of high efficiency, thin film, non-toxic and rich raw materials, the pure silicon solar cell could not meet these requirements, so the new material and process are imminently required. This paper deals with the photovoltaic effect of the carbon material based on the silicon heterostructure, and its possible application to solar cells. Co2-C98/Al2O3/Si heterostructure with a 4 nm-thick Al2O3 layer shows the best photovoltaic effect performance with a short-current density of 18.75 mA/cm2, an open-circuit voltage of 0.447 V and a power conversion efficiency of 3.27% with AM1.5 illumination, which is much better than Co2-C98/Si heterostructure without the Al2O3 layer. The effect of Al2O3 layer is attributed to the reduction of the interface defects, the suppression of the surface recombination and the enhancement of barrier height, which are proved by the capacitance-voltage and current-voltage measurements under dark condition. This work may shed light on the carbon/silicon based solar cells.
-
Keywords:
- photovoltaic effect /
- amorphous carbon /
- heterostructures /
- alumina
[1] Goetzberger A, Hebling C 2000 Sol. Energy Mater. Sol. Cells 62 1
[2] Goetzberger A, Hebling C, Schock H W 2003 Mat. Sci. Eng. R 40 1
[3] Wenham S R, Green M A, Watt M E, Corkish R 2007 Applied Photovoltaics (2nd Ed.) (London: Earthscan Publications Ltd.)
[4] Zhu H W, Wei J Q, Wang K L, Wu D H 2009 Sol. Energy Mater. Sol. Cells 93 1461
[5] Hao H Y, Kong G L, Zeng X B, Xu Y, Diao H W, Liao X B 2005 Acta Phys. Sin. 54 3327 (in Chinese) [郝会颖, 孔光临, 曾湘波, 许颖, 刁宏伟, 廖显伯 2005 54 3327]
[6] Li Y J, Zheng J G, Feng L H, Li B, Zeng G G, Cai Y P, Zhang J Q, Li W, Lei Z, Wu L L, Cai W 2010 Acta Phys. Sin. 59 625 (in Chinese) [李愿杰, 郑家贵, 冯良桓, 黎兵, 曾广根, 蔡亚平, 张静全, 李卫, 雷智, 武莉莉, 蔡伟 2010 59 625]
[7] Zhang W Y, Wu X P, Sun L J, Lin B X, Fu Z X 2008 Acta Phys. Sin. 57 4471 (in Chinese) [张伟英, 邬小鹏, 孙利杰, 林碧霞, 傅竹西 2008 57 4471]
[8] Li Z R, Saini V, Dervishi E, Xu Y, Mahmood M, Biris A R, Biris A S 2009 Nanotech. Confer. Expo. 1 53
[9] Ma Z H, Cao Q, Zuo Y H, Zheng J, Xue C L, Cheng B W, Wang Q M 2010 Chin. Phys. B 20 106104
[10] Lu Z L, Wang C Q, Jia Y, Zhang B L, Yao N 2007 Chin. Phys. 16 843
[11] Yu W, Wang C S, Lu W B, He J, Han X X, Fu G S 2007 Chin. Phys. 16 2310
[12] Freitag M, Martin Y, Misewich J A 2003 Nano Lett. 3 1067
[13] Balasubramanian K, Fan Y W, Burghard M 2004 Appl. Phys. Lett. 84 2400
[14] Lee J U 2005 Appl. Phys. Lett. 87 073101
[15] Gabor M, Zhong Z H, Bosnick K, Park J W, McEuen P L 2009 Science 325 1367
[16] Kymakis E, Amaratunga G A J 2002 Appl. Phys. Lett. 80 112
[17] Kymakis E, Alexandrou I, Amaratunga G A J 2003 J. Appl. Phys. 93 1764
[18] Wang N N, Yu J S, Zang Y, Jiang Y D 2010 Chin. Phys. B 19 038602
[19] Jin Y, Curry R J, Sloan J, Hatton R A, Chong L C, Blanchard N, Stolojan V, Kroto H W, Silva S R P 2006 J. Mater. Chem. 16 3715
[20] Somani P R, Somani S P, Umeno M 2008 Carbon Sci. Technol. 1 1
[21] Wang X, Zhi L J, Mullen K 2008 Nano Lett. 8 323
[22] Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nature Mater. 6 770
[23] Yu H A, Kaneko Y, Yoshimura S, Otani S, Yoshimura 1996 Appl. Phys. Lett. 68 547
[24] Ma M, Xue Q Z, Chen H J, Zhou X Y, Xia D, Lü C, Xie J 2010 Appl. Phys. Lett. 97 061902
[25] Krishna K M, Umeno M, Nukaya Y, Soga T, Jimbo T 2000 Appl. Phys. Lett. 77 1472
[26] Rusop M, Mominuzzaman S M, Soga T, Jimboa T, Umeno M 2006 Sol. Energy Mater. Sol. Cells 90 3205
[27] Yap S S, Tou T Y 2008 Vacuum 82 1449
[28] Hu Z H, Liao X B, Liu Z M, Xia C F, Chen T J 2003 Chin. Phys. 12 112
[29] Liu Z F, Miyauchi M, Uemura Y, Cui Y, Hara K, Zhao Z G, Sunahara K, Furube A 2010 Appl. Phys. Lett. 96 233107
[30] Gielis J J H, Hoex B, van de Sanden M C M, Kessels W M M 2008 J. Appl. Phys. 104 073701
[31] Hoex B, Gielis J J H, van de Sanden M C M, Kessels W M M 2008 J. Appl. Phys. 104 113703
[32] Li G H, Li G C, Bicelli L P 1998 Acta Energiae Solaris Sinica 19 172 (in Chinese) [李果华, 李国昌, Bicelli L P 1998 太阳能学报 19 172]
[33] McPherson M 2002 Nucl. Instrum. Methods Phys. Res. A 488 100
-
[1] Goetzberger A, Hebling C 2000 Sol. Energy Mater. Sol. Cells 62 1
[2] Goetzberger A, Hebling C, Schock H W 2003 Mat. Sci. Eng. R 40 1
[3] Wenham S R, Green M A, Watt M E, Corkish R 2007 Applied Photovoltaics (2nd Ed.) (London: Earthscan Publications Ltd.)
[4] Zhu H W, Wei J Q, Wang K L, Wu D H 2009 Sol. Energy Mater. Sol. Cells 93 1461
[5] Hao H Y, Kong G L, Zeng X B, Xu Y, Diao H W, Liao X B 2005 Acta Phys. Sin. 54 3327 (in Chinese) [郝会颖, 孔光临, 曾湘波, 许颖, 刁宏伟, 廖显伯 2005 54 3327]
[6] Li Y J, Zheng J G, Feng L H, Li B, Zeng G G, Cai Y P, Zhang J Q, Li W, Lei Z, Wu L L, Cai W 2010 Acta Phys. Sin. 59 625 (in Chinese) [李愿杰, 郑家贵, 冯良桓, 黎兵, 曾广根, 蔡亚平, 张静全, 李卫, 雷智, 武莉莉, 蔡伟 2010 59 625]
[7] Zhang W Y, Wu X P, Sun L J, Lin B X, Fu Z X 2008 Acta Phys. Sin. 57 4471 (in Chinese) [张伟英, 邬小鹏, 孙利杰, 林碧霞, 傅竹西 2008 57 4471]
[8] Li Z R, Saini V, Dervishi E, Xu Y, Mahmood M, Biris A R, Biris A S 2009 Nanotech. Confer. Expo. 1 53
[9] Ma Z H, Cao Q, Zuo Y H, Zheng J, Xue C L, Cheng B W, Wang Q M 2010 Chin. Phys. B 20 106104
[10] Lu Z L, Wang C Q, Jia Y, Zhang B L, Yao N 2007 Chin. Phys. 16 843
[11] Yu W, Wang C S, Lu W B, He J, Han X X, Fu G S 2007 Chin. Phys. 16 2310
[12] Freitag M, Martin Y, Misewich J A 2003 Nano Lett. 3 1067
[13] Balasubramanian K, Fan Y W, Burghard M 2004 Appl. Phys. Lett. 84 2400
[14] Lee J U 2005 Appl. Phys. Lett. 87 073101
[15] Gabor M, Zhong Z H, Bosnick K, Park J W, McEuen P L 2009 Science 325 1367
[16] Kymakis E, Amaratunga G A J 2002 Appl. Phys. Lett. 80 112
[17] Kymakis E, Alexandrou I, Amaratunga G A J 2003 J. Appl. Phys. 93 1764
[18] Wang N N, Yu J S, Zang Y, Jiang Y D 2010 Chin. Phys. B 19 038602
[19] Jin Y, Curry R J, Sloan J, Hatton R A, Chong L C, Blanchard N, Stolojan V, Kroto H W, Silva S R P 2006 J. Mater. Chem. 16 3715
[20] Somani P R, Somani S P, Umeno M 2008 Carbon Sci. Technol. 1 1
[21] Wang X, Zhi L J, Mullen K 2008 Nano Lett. 8 323
[22] Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nature Mater. 6 770
[23] Yu H A, Kaneko Y, Yoshimura S, Otani S, Yoshimura 1996 Appl. Phys. Lett. 68 547
[24] Ma M, Xue Q Z, Chen H J, Zhou X Y, Xia D, Lü C, Xie J 2010 Appl. Phys. Lett. 97 061902
[25] Krishna K M, Umeno M, Nukaya Y, Soga T, Jimbo T 2000 Appl. Phys. Lett. 77 1472
[26] Rusop M, Mominuzzaman S M, Soga T, Jimboa T, Umeno M 2006 Sol. Energy Mater. Sol. Cells 90 3205
[27] Yap S S, Tou T Y 2008 Vacuum 82 1449
[28] Hu Z H, Liao X B, Liu Z M, Xia C F, Chen T J 2003 Chin. Phys. 12 112
[29] Liu Z F, Miyauchi M, Uemura Y, Cui Y, Hara K, Zhao Z G, Sunahara K, Furube A 2010 Appl. Phys. Lett. 96 233107
[30] Gielis J J H, Hoex B, van de Sanden M C M, Kessels W M M 2008 J. Appl. Phys. 104 073701
[31] Hoex B, Gielis J J H, van de Sanden M C M, Kessels W M M 2008 J. Appl. Phys. 104 113703
[32] Li G H, Li G C, Bicelli L P 1998 Acta Energiae Solaris Sinica 19 172 (in Chinese) [李果华, 李国昌, Bicelli L P 1998 太阳能学报 19 172]
[33] McPherson M 2002 Nucl. Instrum. Methods Phys. Res. A 488 100
计量
- 文章访问数: 7449
- PDF下载量: 467
- 被引次数: 0