搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

方波电泳电场驱动下液膜马达的电致流动特征

刘中强 甘孔银 李英骏 姜素蓉

引用本文:
Citation:

方波电泳电场驱动下液膜马达的电致流动特征

刘中强, 甘孔银, 李英骏, 姜素蓉

Elecrohydrodynamical characteristics of liquid film motor driven by a square-wave electrophoresis electric field

Liu Zhong-Qiang, Gan Kong-Yin, Li Ying-Jun, Jiang Su-Rong
PDF
导出引用
  • 液膜马达作为一种新颖的实验装置在基础研究和技术应用方面都将会发挥着重要的作用, 深入研究各种条件下液膜马达的电致流动特征是非常有意义的. 本文从理论上研究了均匀恒定外电场中的液膜马达在方波电泳电场驱动下的动力学特征, 解析地给出了液膜转动的线速度随时空变化的规律. 理论结果表明, 液膜会随着电泳电场频率的增大由对称性往复转动逐渐转变为振动, 这不仅有助于从理论上认识液膜马达振动的物理根源, 也为在实际应用中设计液膜搅拌机提供了一种新思路.
    Liquid film motor as a novel experimental device will play an important role in basic research and technology applications. In-depth theoretical studies on its electro-hydrodynamics (EHD) motions under various conditions are of great significance. In current paper, the dynamical characteristics of the liquid film motor driven by a square-wave electrophoresis electric field perpendicular to a uniform constant external electric field are investigated. Space-time dependence of the film's rotation linear velocity is derived analytically. The theoretical results indicate that a symmetrical reciprocating rotation in the film gradually converts to a vibration as the frequency of the electrophoresis electric field increases. This not only helps us understand the physical origin of the vibration of the liquid film motor, but also provides a new option to design a liquid film mixer in the application.
    • 基金项目: 国家自然科学基金(批准号:11074300)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11074300).
    [1]

    Gennes P G D,Prost J 1995 The Physics of Liquid Crystals (2nd Ed.) (New York: Oxford University) pp230-244

    [2]
    [3]

    Chandrasekhar S 1992 Liquid Crystals (2nd Ed.) (New York: Cambridge University) pp177-213

    [4]
    [5]

    Xu Z D, Liu Y F, Xiang Y, Yang J, You S J, She W L 1999 Acta Phys. Sin. 48 2283 (in Chinese) [徐则达, 刘焰发, 项颖, 杨杰, 游石基, 佘卫龙 1999 48 2283]

    [6]
    [7]

    Sonin A A 1998 Freely Suspended Liquid Crystalline Films (1st Ed.) (New York:John Wiley Sons) pp113-131

    [8]
    [9]

    Faetti S, Fronzoni L, Rolla P A 1983 J. Chem. Phys. 79 5054

    [10]
    [11]

    Faetti S, Fronzoni L, Rolla P A 1983 J. Chem. Phys. 79 1427

    [12]
    [13]

    Morris S W, de Bruyn J R, May A D 1990 Phys. Rev. Lett. 65 2378

    [14]
    [15]

    Daya Z A, Morris S W, de Bruyn J R 1997 Phys. Rev. E 55 2682

    [16]
    [17]

    Ramos A, Morgan H, Green N G, Castellanos A 1998 J. Phys. D: Appl. Phys. 31 2338

    [18]
    [19]

    Shirsavar R, Amjadi A, Radja N H, Niry M D, Tabar M R R, Ejtehadi M R 2006 arXiv:condmat/0605029 [cond-mat.soft]

    [20]

    Amjadi A, Shirsavar R, Radja N H,Ejtehadi M R 2008 arXiv:0805.0490 [cond-mat.soft]

    [21]
    [22]
    [23]

    Amjadi A, Shirsavar R, Radja N H, Ejtehadi M R 2009 Microfluid Nanofluid 6 711

    [24]

    Shirsavar R, Amjadi A, Tonddast-Navaei A, Ejtehadi M R 2011 Exp. Fluids 50 419

    [25]
    [26]

    Shiryaeva E V, Vladimirov V A, Zhukov M Y 2009 Phys. Rev. E 80 041603

    [27]
    [28]
    [29]

    Grosu F P, Bologa M K 2010 Surf. Eng. Appl. Electrochem. 46 43

    [30]
    [31]

    Liu Z Q, Li Y J, Zhang G C, Jiang S R 2011 Phys. Rev. E 83 026303

    [32]

    Liu Z Q, Zhang G C, Li Y J, Jiang S R 2012 Phys. Rev. E 85 036314

    [33]
    [34]

    Del Giudice E, Preparata G, Vitiello G 1988 Phys. Rev. Lett. 61 1085

    [35]
    [36]
    [37]

    Sivasubramanian S, Widom A, Srivastava Y N 2005 Physica A 345 356

    [38]
    [39]

    Del Giudice E, Vitiello G 2006 Phys. Rev. A 74 022105

    [40]

    Preparata G 1995 QED Coherence in Matter (1st Ed.) (Singapore, New Jersey, London, Hong Kong: World Scientific) pp195-219

    [41]
    [42]
    [43]

    Preparata G 1988 Phys. Rev. A 38 233

    [44]
    [45]

    Arani R, Bono I, Del Giudice E, Preparata G 1995 Int. J. Mod. Phys. B 9 1813

    [46]
    [47]

    Del Giudice E, Preparata G 1998 Macroscopic Quantum Coherence (1st Ed.) (Singapore:World Scientific) pp49-64

    [48]

    Del Giudice E 2007 J. Phys.: Conf. Ser. 67 012006

    [49]
    [50]

    Buzzacchi M, Del Giudice E, Preparata G 2002 Int. J. Mod. Phys. B 16 3771

    [51]
    [52]
    [53]

    Del Giudice E, Galimberti A, Gamberale L, Preparata G 1995 Mod. Phys. Lett. 9 953

    [54]
    [55]

    Del Giudice E, Fleischmann M, Preparata G, Talpo G 2002 Bioelectromagnetics 23 522

    [56]
    [57]

    Del Giudice E, Preparata G, Fleischmann M 2000 J. Elec. Chem. 482 110

    [58]
    [59]

    Sivasubramanian S, Widom A, Srivastava Y N 2001 Physica A 301 241

    [60]
    [61]

    Sivasubramanian S, Widom A, Srivastava Y N 2001 Int. J. Mod. Phys. B 15 537

    [62]
    [63]

    Sivasubramanian S, Widom A, Srivastava Y N 2002 Mod. Phys. Lett. B 16 1201

    [64]
    [65]

    Sivasubramanian S, Widom A, Srivastava Y N 2003 J. Phys. Condens. Matter 15 1109

    [66]
    [67]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203

    [68]
    [69]

    Apostol M 2009 Phys. Lett. A 373 379

    [70]
    [71]

    Yinnon C A, Yinnon T A 2009 Mod. Phys. Lett. B 23 1959

    [72]
    [73]

    Huang C, Wikfeldt K T, Tokushima T, Nordlund D, Harada Y, Bergmann U, Niebuhr M, Weiss T M, Horikawa Y, Leetmaa M, Ljungberg M P, Takahashi O, Lenz A, Ojame L, Lyubartsev A P, Shin S, Pettersson L G M, Nilsson A 2009 Proc. Natl. Acad. Sci. USA 106 15214

    [74]
    [75]

    Del Giudice E, Spinetti P R, Tedeschi A 2010 Water 2 566

    [76]

    Zheng J M, Chin W C, Khijniak E, Khijniak J E, Pollack G H 2006 Adv. Coll. Inter. Sci. 23 19

    [77]
    [78]

    Widom A, Swain J, Silverberg J, Sivasubramanian S, Srivastava Y N 2009 Phys. Rev. E 80 016301

    [79]
    [80]
    [81]

    Luo L, Klapp S H L, Chen X S 2011 J. Chem. Phys. 135 134701

    [82]
    [83]

    Luo L, Chen X S 2011 Sci. China Phys. Mech. Astron. 54 1555

    [84]
    [85]

    Fuchs E C, Baroni P, Bitschnau B, Noirez L 2010 J. Phys. D 43 105502

    [86]
    [87]

    Gandhi M V, Thompson B S 1992 Smart Materials and Structures (1st Ed.) (London, New York, Tokyo, Victoria, Madras: Chapman Hall) pp137-158

    [88]
    [89]

    Wang Z W, Lin Z F, Tao R B 1996 Acta Phys. Sin. 45 0640 (in Chinese) [王作维, 林志方, 陶瑞宝 1996 45 0640]

    [90]

    Bingham E C 1916 Bulletin US Bureau of Standards 13 309

    [91]
    [92]

    Steffe J F 1996 Rheological Methods in Food Process Engineering (2nd Ed.) (East Lansing, Mich.: Freeman Press) pp20-26

    [93]
    [94]
  • [1]

    Gennes P G D,Prost J 1995 The Physics of Liquid Crystals (2nd Ed.) (New York: Oxford University) pp230-244

    [2]
    [3]

    Chandrasekhar S 1992 Liquid Crystals (2nd Ed.) (New York: Cambridge University) pp177-213

    [4]
    [5]

    Xu Z D, Liu Y F, Xiang Y, Yang J, You S J, She W L 1999 Acta Phys. Sin. 48 2283 (in Chinese) [徐则达, 刘焰发, 项颖, 杨杰, 游石基, 佘卫龙 1999 48 2283]

    [6]
    [7]

    Sonin A A 1998 Freely Suspended Liquid Crystalline Films (1st Ed.) (New York:John Wiley Sons) pp113-131

    [8]
    [9]

    Faetti S, Fronzoni L, Rolla P A 1983 J. Chem. Phys. 79 5054

    [10]
    [11]

    Faetti S, Fronzoni L, Rolla P A 1983 J. Chem. Phys. 79 1427

    [12]
    [13]

    Morris S W, de Bruyn J R, May A D 1990 Phys. Rev. Lett. 65 2378

    [14]
    [15]

    Daya Z A, Morris S W, de Bruyn J R 1997 Phys. Rev. E 55 2682

    [16]
    [17]

    Ramos A, Morgan H, Green N G, Castellanos A 1998 J. Phys. D: Appl. Phys. 31 2338

    [18]
    [19]

    Shirsavar R, Amjadi A, Radja N H, Niry M D, Tabar M R R, Ejtehadi M R 2006 arXiv:condmat/0605029 [cond-mat.soft]

    [20]

    Amjadi A, Shirsavar R, Radja N H,Ejtehadi M R 2008 arXiv:0805.0490 [cond-mat.soft]

    [21]
    [22]
    [23]

    Amjadi A, Shirsavar R, Radja N H, Ejtehadi M R 2009 Microfluid Nanofluid 6 711

    [24]

    Shirsavar R, Amjadi A, Tonddast-Navaei A, Ejtehadi M R 2011 Exp. Fluids 50 419

    [25]
    [26]

    Shiryaeva E V, Vladimirov V A, Zhukov M Y 2009 Phys. Rev. E 80 041603

    [27]
    [28]
    [29]

    Grosu F P, Bologa M K 2010 Surf. Eng. Appl. Electrochem. 46 43

    [30]
    [31]

    Liu Z Q, Li Y J, Zhang G C, Jiang S R 2011 Phys. Rev. E 83 026303

    [32]

    Liu Z Q, Zhang G C, Li Y J, Jiang S R 2012 Phys. Rev. E 85 036314

    [33]
    [34]

    Del Giudice E, Preparata G, Vitiello G 1988 Phys. Rev. Lett. 61 1085

    [35]
    [36]
    [37]

    Sivasubramanian S, Widom A, Srivastava Y N 2005 Physica A 345 356

    [38]
    [39]

    Del Giudice E, Vitiello G 2006 Phys. Rev. A 74 022105

    [40]

    Preparata G 1995 QED Coherence in Matter (1st Ed.) (Singapore, New Jersey, London, Hong Kong: World Scientific) pp195-219

    [41]
    [42]
    [43]

    Preparata G 1988 Phys. Rev. A 38 233

    [44]
    [45]

    Arani R, Bono I, Del Giudice E, Preparata G 1995 Int. J. Mod. Phys. B 9 1813

    [46]
    [47]

    Del Giudice E, Preparata G 1998 Macroscopic Quantum Coherence (1st Ed.) (Singapore:World Scientific) pp49-64

    [48]

    Del Giudice E 2007 J. Phys.: Conf. Ser. 67 012006

    [49]
    [50]

    Buzzacchi M, Del Giudice E, Preparata G 2002 Int. J. Mod. Phys. B 16 3771

    [51]
    [52]
    [53]

    Del Giudice E, Galimberti A, Gamberale L, Preparata G 1995 Mod. Phys. Lett. 9 953

    [54]
    [55]

    Del Giudice E, Fleischmann M, Preparata G, Talpo G 2002 Bioelectromagnetics 23 522

    [56]
    [57]

    Del Giudice E, Preparata G, Fleischmann M 2000 J. Elec. Chem. 482 110

    [58]
    [59]

    Sivasubramanian S, Widom A, Srivastava Y N 2001 Physica A 301 241

    [60]
    [61]

    Sivasubramanian S, Widom A, Srivastava Y N 2001 Int. J. Mod. Phys. B 15 537

    [62]
    [63]

    Sivasubramanian S, Widom A, Srivastava Y N 2002 Mod. Phys. Lett. B 16 1201

    [64]
    [65]

    Sivasubramanian S, Widom A, Srivastava Y N 2003 J. Phys. Condens. Matter 15 1109

    [66]
    [67]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203

    [68]
    [69]

    Apostol M 2009 Phys. Lett. A 373 379

    [70]
    [71]

    Yinnon C A, Yinnon T A 2009 Mod. Phys. Lett. B 23 1959

    [72]
    [73]

    Huang C, Wikfeldt K T, Tokushima T, Nordlund D, Harada Y, Bergmann U, Niebuhr M, Weiss T M, Horikawa Y, Leetmaa M, Ljungberg M P, Takahashi O, Lenz A, Ojame L, Lyubartsev A P, Shin S, Pettersson L G M, Nilsson A 2009 Proc. Natl. Acad. Sci. USA 106 15214

    [74]
    [75]

    Del Giudice E, Spinetti P R, Tedeschi A 2010 Water 2 566

    [76]

    Zheng J M, Chin W C, Khijniak E, Khijniak J E, Pollack G H 2006 Adv. Coll. Inter. Sci. 23 19

    [77]
    [78]

    Widom A, Swain J, Silverberg J, Sivasubramanian S, Srivastava Y N 2009 Phys. Rev. E 80 016301

    [79]
    [80]
    [81]

    Luo L, Klapp S H L, Chen X S 2011 J. Chem. Phys. 135 134701

    [82]
    [83]

    Luo L, Chen X S 2011 Sci. China Phys. Mech. Astron. 54 1555

    [84]
    [85]

    Fuchs E C, Baroni P, Bitschnau B, Noirez L 2010 J. Phys. D 43 105502

    [86]
    [87]

    Gandhi M V, Thompson B S 1992 Smart Materials and Structures (1st Ed.) (London, New York, Tokyo, Victoria, Madras: Chapman Hall) pp137-158

    [88]
    [89]

    Wang Z W, Lin Z F, Tao R B 1996 Acta Phys. Sin. 45 0640 (in Chinese) [王作维, 林志方, 陶瑞宝 1996 45 0640]

    [90]

    Bingham E C 1916 Bulletin US Bureau of Standards 13 309

    [91]
    [92]

    Steffe J F 1996 Rheological Methods in Food Process Engineering (2nd Ed.) (East Lansing, Mich.: Freeman Press) pp20-26

    [93]
    [94]
  • [1] 王宇枭, 成泽帅, 江可扬, 魏琳扬, 历秀明. 基于辐射制冷与电致变色的可调节多层膜性能研究.  , 2024, 73(21): 214401. doi: 10.7498/aps.73.20240863
    [2] 武晓东, 陈沿州, 韩瑞, 郭雨怡, 庄杰, 石富坤. 液体中高压脉冲电场产生扩散气泡的规律.  , 2023, 72(21): 214701. doi: 10.7498/aps.72.20230443
    [3] 张彬, 成鹏, 李清廉, 陈慧源, 李晨阳. 液体横向射流在气膜作用下的破碎过程.  , 2021, 70(5): 054702. doi: 10.7498/aps.70.20201384
    [4] 孙肖宁, 曲兆明, 王庆国, 袁扬. VO2纳米粒子填充型聚合物薄膜电致相变特性.  , 2020, 69(24): 247201. doi: 10.7498/aps.69.20200834
    [5] 张兆慧, 于晓东, 李海鹏, 韩奎. 烷烃链长对直链烷烃液体膜摩擦性质的影响.  , 2019, 68(22): 228101. doi: 10.7498/aps.68.20190740
    [6] 张娇, 李毅, 刘志敏, 李政鹏, 黄雅琴, 裴江恒, 方宝英, 王晓华, 肖寒. 掺钨VO2薄膜的电致相变特性.  , 2017, 66(23): 238101. doi: 10.7498/aps.66.238101
    [7] 李春曦, 陈朋强, 叶学民. 连续凹槽基底对含非溶性活性剂薄液膜流动特性的影响.  , 2014, 63(22): 224703. doi: 10.7498/aps.63.224703
    [8] 郭亚丽, 魏兰, 沈胜强, 陈桂影. 双液滴撞击平面液膜的流动与传热特性.  , 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [9] 邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武. 金属Pt薄膜上二氧化钒的制备及其电致相变性能研究.  , 2013, 62(21): 217201. doi: 10.7498/aps.62.217201
    [10] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响.  , 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [11] 郝鹏飞, 姚朝晖, 何 枫. 粗糙微管道内液体流动特性的实验研究.  , 2007, 56(8): 4728-4732. doi: 10.7498/aps.56.4728
    [12] 曹炳阳, 陈 民, 过增元. 纳米通道内液体流动的滑移现象.  , 2006, 55(10): 5305-5310. doi: 10.7498/aps.55.5305
    [13] 曾华荣, 余寒峰, 初瑞清, 李国荣, 殷庆瑞, 唐新桂. PZT铁电薄膜纳米尺度铁电畴的场致位移特性.  , 2005, 54(3): 1437-1441. doi: 10.7498/aps.54.1437
    [14] 欧阳成. 电流变液系统流动的渐近估计.  , 2004, 53(6): 1900-1902. doi: 10.7498/aps.53.1900
    [15] 代富平, 吕淑媛, 冯博学, 蒋生蕊, 陈 冲. 非晶态WO3薄膜电致变色特性的研究.  , 2003, 52(4): 1003-1008. doi: 10.7498/aps.52.1003
    [16] 彭子龙, 王伟宁, 朱涛, 韩秀峰, 詹文山. 微细矩形磁性薄膜体系中一致转动磁化模式.  , 2003, 52(11): 2901-2905. doi: 10.7498/aps.52.2991
    [17] 周欣, 罗军, 孙献平, 曾锡之, 刘买利, 刘午阳. 流动系统中的激光增强固体和液体129Xe核磁共振信号.  , 2002, 51(10): 2221-2224. doi: 10.7498/aps.51.2221
    [18] 陶向明, 曾耀武, 冯春木, 焦正宽, 叶高翔. 沉积在液体衬底上连续铝薄膜的微观结构.  , 2000, 49(11): 2235-2239. doi: 10.7498/aps.49.2235
    [19] 冯博学, 谢 亮, 王 君, 蒋生蕊, 陈光华. 射频溅射微晶NiOxHy膜电致变色性能及其机理研究.  , 2000, 49(10): 2066-2071. doi: 10.7498/aps.49.2066
    [20] 许培英, 盛冬宁, 陆怀先. 磁性液体的介电特性.  , 1988, 37(7): 1192-1196. doi: 10.7498/aps.37.1192
计量
  • 文章访问数:  7539
  • PDF下载量:  827
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-09
  • 修回日期:  2012-03-12
  • 刊出日期:  2012-07-05

/

返回文章
返回
Baidu
map