搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低损耗低非线性高负色散光子晶体光纤的优化设计

张亚妮

引用本文:
Citation:

低损耗低非线性高负色散光子晶体光纤的优化设计

张亚妮

Design and optimization of low-loss low-nonlinear high negative-dispersion photonic crystal fiber

Zhang Ya-Ni
PDF
导出引用
  • 设计了一种同轴双芯六角点阵光子晶体光纤, 该光纤中心缺失一根空气柱形成内纤芯, 通过减小第4环空气孔的直径形成外纤芯. 采用全矢量有限元法并结合各向异性完美匹配层边界条件, 对其色散、非线性、约束损耗和模场等特性进行了数值模拟. 结果发现, 该光纤呈现高负色散可调效应和较强的模场约束能力, 约束损耗接近10-2 dB m-1. 调整光纤结构参数(即空气孔间隔, 小孔直径d1和相对孔间隔比f), 可以控制其高负色散工作波长. 若调整光纤结构参数=1.2 , f=0.917, d1=0.515 m时, 该光纤在低损耗通信窗口C波段呈现负色散和负色散斜率, 其色散斜率在-1-6 ps km-1nm-2范围内波动, 在波长1.55 m处负色散值为-3400 ps km-1nm-1, 模场面积高达43 m2, 非线性系数仅有3.6 km-1W-1. 该光纤在C波段呈现的低损耗低非线性高负色散特性, 具有很好的色散补偿能力, 将在长距离大容量 高功率高速光通信系统中获得很好的应用.
    A novel hexangular lattice dual-concentric-core photonic crystal fiber is proposed, which is composed of a central defect core, an outer ring core by introducing small air-holes on the forth ring and double cladding circle air-holes along the direction of fiber length. Based on full vector finite element method with anisotropic perfectly matched layers, its dispersion, nonlinear, leakage loss and mode field are numerically investigated. Numerical results indicate that the proposed fiber shows higher negative dispersion tunable effect and stronger confinement ability of guided mode, which the leakage loss is close to 10-2 dBm-1. The wavelength for high negative dispersion value can be adjusted by artificially choosing the parameters of proposed fiber, i.e. , d1 and f. Both its dispersion and dispersion slope are negative, the dispersion slope values are between-1-6 pskm-1nm-2 over C band, and its negative dispersion value is-3400 pskm-1nm-1, the nonlinear coefficient is only 3.6 km-1W-1, and the corresponding area of mode field is 43 m2 at wavelength of 1.55 m, if the parameter is selected as =1.2 m, f=0.917, d1=0.515 m. Obviously, it has a good dispersion compensation, therefore it has admirable applications in the field of high-speed large-capacity high-power pulses long-distance communication system.
    • 基金项目: 国家留学基金委员会西部人才计划(批准号: 20095004)、陕西省科技攻关计划(批准号: 2010K01-078)、陕西省教育厅自然科学基金(批准号: 2010JK403)和宝鸡市科技计划(批准号: 2010BJ02)资助的课题.
    • Funds: Project supported by theWestern Talent Program of China Scholarship Council (Grant No. 20095004), the Key Science and Technology Program of Shaanxi Province, China (Grant No. 2010K01-078), the Natural Science Foundation of the Education Bureau of Shaanxi Province, China (Grant No. 2010JK403), and the Science and Technology Program of Baoji, China (Grant No. 2010BJ02).
    [1]

    Gruner-Nielsen L, Knudsen S N, Edvold B, Veng T, Magnussen D, Larsen C C, Damsgaard H 2000 Opt. Fiber Technol. 6 164

    [2]

    Auguste J L, Blondy J M, Maury J, Marcou J, Dussardier B, Monnom G, Jindal R, Thyagarajan K, Pal B P 2002 Opt. Fiber Technol. 8 89

    [3]

    Grüner-Nielsen L, Wandel M, Kristensen P, Jorgensen C, Jorgensen L V, Edvold B, Pálsdóttir B, Jakobsen D 2005 IEEE J. Lightwave Technol. 23 3566

    [4]

    Yang S G, Zhang Y J, Peng X Z, Lu Y, Xie S Z, Li J Y, Chen W, Jiang Z W, Peng J G, Li H Q 2006 Opt. Express 14 3015

    [5]

    Zhang Y N 2010 Acta Phys. Sin. 59 4050 (in Chinese) [张亚妮 2010 59 4050]

    [6]

    Zhang Y N 2010 Acta Phys. Sin. 59 8632 (in Chinese) [张亚妮 2010 59 8632]

    [7]

    Jiang L H, Hou L T 2010 Acta Phys. Sin. 59 1095 (in Chinese) [姜凌红, 侯蓝田 2010 59 1095]

    [8]

    Gérôme F, Auguste J L, Blondy J M 2004 Opt. Lett. 29 2725

    [9]

    Ni Y, An L, Peng J, Fan C 2004 IEEE Photon. Technol. Lett. 16 1516

    [10]

    Cui Y L, Hou L T 2010 Acta Phys. Sin. 59 2571 (in Chinese) [崔艳玲, 侯蓝田 2010 59 2571]

    [11]

    Zsigri B, Laegsgaard J, Bjarklev A 2004 J. Opt. A 6 717

    [12]

    Huttunen A, Törmä P 2005 Opt. Express 13 627

    [13]

    Mangan B J, Couny F, Farr L, Langford A, Roberts P J, Williams D P, Banham M, Mason M W, Murphy D F, Brown E A M, Sabert H, Birks T A, Knight J C, Russell P St J 2004 Lasers and Electro-Optics 2 1069

    [14]

    Zhang Y J, Yang S G, Peng X Z, Lu Y, Chen X F, Xie S Z 2005 Proc. SPIE 5950 43

    [15]

    Zhu Z, Brown T 2002 Opt. Express 10 853

    [16]

    Zhang Y N, Ren L Y, Gong Y K, Li X H, Wang L R, Sun C D 2010 Appl. Opt. 49 3208

    [17]

    Zhang Y N 2011 Appl. Opt. 50 E125

    [18]

    Saitoh K, Koshiba M, Hasegawa T, Sasaoka E 2003 Opt. Express 11 843

    [19]

    Liu Y C, Lai Y 2005 Opt. Express 13 225

    [20]

    Poli F, Cucinotta A, Selleri S, Bouk A H 2004 IEEE Photon. Technol. Lett. 16 1065

    [21]

    Liu X M, Zhou X Q, Lu C 2005 Phys. Rev. A 72 013811

    [22]

    Ferrando A, Silvestre E, Andres P, Miret J J, Andres M V 2001 Opt. Express 9 687

    [23]

    Begum F, Namihira Y, Razzak S M A, Kaijage S, Hai N H, Kinjo T, Miyagi K, Zou N 2009 Opt. Laser Technol. 41 679

    [24]

    Huttunen A, Törmä P 2005 Opt. Express 13 627

    [25]

    Liu X M 2010 Phys. Rev. A 81 053819

    [26]

    Liu X M 2010 Phys. Rev. A 81 023811

    [27]

    Fujisawa T, Saitoh K, Wada K, Koshiba M 2005 Opt. Express 13 893

    [28]

    Chen M Y, Yu R J, Zhao A P 2004 J. Opt. A 6 997

    [29]

    Issa N A, van Eijkelenborg M A, Fellew M, Cox F, Henry G, Large M C J 2004 Opt. Lett. 29 1336

    [30]

    Varshney S K, Saitoh K, Koshiba M, Roberts P J 2007 Opt. Fiber Technol. 13 174

  • [1]

    Gruner-Nielsen L, Knudsen S N, Edvold B, Veng T, Magnussen D, Larsen C C, Damsgaard H 2000 Opt. Fiber Technol. 6 164

    [2]

    Auguste J L, Blondy J M, Maury J, Marcou J, Dussardier B, Monnom G, Jindal R, Thyagarajan K, Pal B P 2002 Opt. Fiber Technol. 8 89

    [3]

    Grüner-Nielsen L, Wandel M, Kristensen P, Jorgensen C, Jorgensen L V, Edvold B, Pálsdóttir B, Jakobsen D 2005 IEEE J. Lightwave Technol. 23 3566

    [4]

    Yang S G, Zhang Y J, Peng X Z, Lu Y, Xie S Z, Li J Y, Chen W, Jiang Z W, Peng J G, Li H Q 2006 Opt. Express 14 3015

    [5]

    Zhang Y N 2010 Acta Phys. Sin. 59 4050 (in Chinese) [张亚妮 2010 59 4050]

    [6]

    Zhang Y N 2010 Acta Phys. Sin. 59 8632 (in Chinese) [张亚妮 2010 59 8632]

    [7]

    Jiang L H, Hou L T 2010 Acta Phys. Sin. 59 1095 (in Chinese) [姜凌红, 侯蓝田 2010 59 1095]

    [8]

    Gérôme F, Auguste J L, Blondy J M 2004 Opt. Lett. 29 2725

    [9]

    Ni Y, An L, Peng J, Fan C 2004 IEEE Photon. Technol. Lett. 16 1516

    [10]

    Cui Y L, Hou L T 2010 Acta Phys. Sin. 59 2571 (in Chinese) [崔艳玲, 侯蓝田 2010 59 2571]

    [11]

    Zsigri B, Laegsgaard J, Bjarklev A 2004 J. Opt. A 6 717

    [12]

    Huttunen A, Törmä P 2005 Opt. Express 13 627

    [13]

    Mangan B J, Couny F, Farr L, Langford A, Roberts P J, Williams D P, Banham M, Mason M W, Murphy D F, Brown E A M, Sabert H, Birks T A, Knight J C, Russell P St J 2004 Lasers and Electro-Optics 2 1069

    [14]

    Zhang Y J, Yang S G, Peng X Z, Lu Y, Chen X F, Xie S Z 2005 Proc. SPIE 5950 43

    [15]

    Zhu Z, Brown T 2002 Opt. Express 10 853

    [16]

    Zhang Y N, Ren L Y, Gong Y K, Li X H, Wang L R, Sun C D 2010 Appl. Opt. 49 3208

    [17]

    Zhang Y N 2011 Appl. Opt. 50 E125

    [18]

    Saitoh K, Koshiba M, Hasegawa T, Sasaoka E 2003 Opt. Express 11 843

    [19]

    Liu Y C, Lai Y 2005 Opt. Express 13 225

    [20]

    Poli F, Cucinotta A, Selleri S, Bouk A H 2004 IEEE Photon. Technol. Lett. 16 1065

    [21]

    Liu X M, Zhou X Q, Lu C 2005 Phys. Rev. A 72 013811

    [22]

    Ferrando A, Silvestre E, Andres P, Miret J J, Andres M V 2001 Opt. Express 9 687

    [23]

    Begum F, Namihira Y, Razzak S M A, Kaijage S, Hai N H, Kinjo T, Miyagi K, Zou N 2009 Opt. Laser Technol. 41 679

    [24]

    Huttunen A, Törmä P 2005 Opt. Express 13 627

    [25]

    Liu X M 2010 Phys. Rev. A 81 053819

    [26]

    Liu X M 2010 Phys. Rev. A 81 023811

    [27]

    Fujisawa T, Saitoh K, Wada K, Koshiba M 2005 Opt. Express 13 893

    [28]

    Chen M Y, Yu R J, Zhao A P 2004 J. Opt. A 6 997

    [29]

    Issa N A, van Eijkelenborg M A, Fellew M, Cox F, Henry G, Large M C J 2004 Opt. Lett. 29 1336

    [30]

    Varshney S K, Saitoh K, Koshiba M, Roberts P J 2007 Opt. Fiber Technol. 13 174

  • [1] 惠战强, 高黎明, 刘瑞华, 韩冬冬, 汪伟. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器.  , 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [2] 惠战强. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器.  , 2021, (): . doi: 10.7498/aps.70.20211650
    [3] 董丽娟, 薛春华, 孙勇, 邓富胜, 石云龙. 单负材料异质结构中损耗诱导的场局域增强和光学双稳态.  , 2016, 65(11): 114207. doi: 10.7498/aps.65.114207
    [4] 龚健, 张利伟, 陈亮, 乔文涛, 汪舰. 石墨烯基双曲色散特异材料的负折射与体等离子体性质.  , 2015, 64(6): 067301. doi: 10.7498/aps.64.067301
    [5] 姜珊珊, 刘艳, 邢尔军. 低差分模式时延少模光纤的有限元分析及设计.  , 2015, 64(6): 064212. doi: 10.7498/aps.64.064212
    [6] 龚建强, 梁昌洪. 精确提取一维互易有限周期性结构色散特性的宏元胞法.  , 2013, 62(19): 199203. doi: 10.7498/aps.62.199203
    [7] 韩博琳, 娄淑琴, 鹿文亮, 苏伟, 邹辉, 王鑫. 新型超宽带双芯光子晶体光纤偏振分束器的研究.  , 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [8] 许强, 苗润才, 张亚妮. 六角点阵蜂窝状包层光子晶体光纤中的高双折射负色散效应.  , 2012, 61(23): 234210. doi: 10.7498/aps.61.234210
    [9] 张亚妮. 压缩六角点阵椭圆孔光子晶体光纤的低色散高双折射效应.  , 2010, 59(6): 4050-4055. doi: 10.7498/aps.59.4050
    [10] 张亚妮. 新型矩形点阵光子晶体光纤的高双折射负色散效应.  , 2010, 59(12): 8632-8639. doi: 10.7498/aps.59.8632
    [11] 王天琪, 俞重远, 刘玉敏, 芦鹏飞. 有限元法分析不同形状量子点的应变能及弛豫度变化.  , 2009, 58(8): 5618-5623. doi: 10.7498/aps.58.5618
    [12] 韩奇钢, 贾晓鹏, 马红安, 李瑞, 张聪, 李战厂, 田宇. 基于三维有限元法模拟分析六面顶顶锤的热应力.  , 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [13] 陈云, 康秀红, 李殿中. 自由枝晶生长相场模型的自适应有限元法模拟.  , 2009, 58(1): 390-398. doi: 10.7498/aps.58.390
    [14] 张亚妮. 微结构聚合物光纤中高双折射可调效应研究.  , 2008, 57(9): 5729-5734. doi: 10.7498/aps.57.5729
    [15] 张 虎, 王秋国, 杨伯君, 于 丽. 基于正方形格子的空芯光子带隙光纤的模式特性和泄漏损耗.  , 2008, 57(9): 5722-5728. doi: 10.7498/aps.57.5722
    [16] 梁 双, 吕燕伍. 有限元法计算GaN/AlN量子点结构中的电子结构.  , 2007, 56(3): 1617-1620. doi: 10.7498/aps.56.1617
    [17] 郑力明, 王发强, 刘颂豪. 光纤色散与损耗对光量子密钥分发系统的影响.  , 2007, 56(4): 2180-2183. doi: 10.7498/aps.56.2180
    [18] 赵兴涛, 侯蓝田, 刘兆伦, 王 伟, 魏红彦, 马景瑞. 改进的全矢量有效折射率方法分析光子晶体光纤的色散特性.  , 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [19] 赵 艳, 沈中华, 陆 建, 倪晓武. 激光在管道中激发周向导波的有限元模拟.  , 2007, 56(1): 321-326. doi: 10.7498/aps.56.321
    [20] 李曙光, 刘晓东, 侯蓝田. 光子晶体光纤的导波模式与色散特性.  , 2003, 52(11): 2811-2817. doi: 10.7498/aps.52.2811
计量
  • 文章访问数:  7413
  • PDF下载量:  716
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-31
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

/

返回文章
返回
Baidu
map